Math Toolkit

John Maddock
Paul A. Bristow
Hubert Holin
Xiaogang Zhang
Bruno Lalande
Johan Råde
Gautam Sewani
Thijs van den Berg

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

Overview .. 5
About the Math Toolkit ... 5
Navigation .. 5
Directory and File Structure ... 6
Namespaces .. 7
Calculation of the Type of the Result ... 7
Error Handling .. 7
Compilers ... 8
Configuration and Policies ... 14
Thread Safety .. 17
Performance .. 18
If and How to Build the Library and its Examples and Tests .. 18
History and What's New .. 19
C99 and C++ TR1 C-style Functions .. 21
Contact Info and Support .. 29
Statistical Distributions and Functions .. 29
Statistical Distributions Tutorial .. 29
Overview of Distributions ... 29
Headers and Namespaces .. 29
Distributions are Objects ... 29
Generic operations common to all distributions are non-member functions ... 30
Complements are supported too - and when to use them ... 32
Parameters can be calculated ... 34
Summary .. 35
Worked Examples ... 35
Distribution Construction Example .. 35
Student’s t Distribution Examples ... 38
Chi Squared Distribution Examples .. 50
F Distribution Examples .. 58
Binomial Distribution Examples .. 62
Negative Binomial Distribution Examples .. 78
Normal Distribution Examples ... 92
Non Central Chi Squared Example .. 98
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Functions</td>
<td>264</td>
</tr>
<tr>
<td>Error Function Inverses</td>
<td>268</td>
</tr>
<tr>
<td>Polynomials</td>
<td>271</td>
</tr>
<tr>
<td>Legendre (and Associated) Polynomials</td>
<td>271</td>
</tr>
<tr>
<td>Laguerre (and Associated) Polynomials</td>
<td>276</td>
</tr>
<tr>
<td>Hermite Polynomials</td>
<td>279</td>
</tr>
<tr>
<td>Spherical Harmonics</td>
<td>282</td>
</tr>
<tr>
<td>Bessel Functions</td>
<td>284</td>
</tr>
<tr>
<td>Bessel Function Overview</td>
<td>284</td>
</tr>
<tr>
<td>Bessel Functions of the First and Second Kinds</td>
<td>286</td>
</tr>
<tr>
<td>Modified Bessel Functions of the First and Second Kinds</td>
<td>291</td>
</tr>
<tr>
<td>Spherical Bessel Functions of the First and Second Kinds</td>
<td>295</td>
</tr>
<tr>
<td>Elliptic Integrals</td>
<td>297</td>
</tr>
<tr>
<td>Elliptic Integral Overview</td>
<td>297</td>
</tr>
<tr>
<td>Elliptic Integrals - Carlson Form</td>
<td>302</td>
</tr>
<tr>
<td>Elliptic Integrals of the First Kind - Legendre Form</td>
<td>306</td>
</tr>
<tr>
<td>Elliptic Integrals of the Second Kind - Legendre Form</td>
<td>308</td>
</tr>
<tr>
<td>Elliptic Integrals of the Third Kind - Legendre Form</td>
<td>310</td>
</tr>
<tr>
<td>Zeta Functions</td>
<td>313</td>
</tr>
<tr>
<td>Riemann Zeta Function</td>
<td>313</td>
</tr>
<tr>
<td>Exponential Integrals</td>
<td>316</td>
</tr>
<tr>
<td>Exponential Integral En</td>
<td>316</td>
</tr>
<tr>
<td>Exponential Integral Ei</td>
<td>318</td>
</tr>
<tr>
<td>Logs, Powers, Roots and Exponentials</td>
<td>320</td>
</tr>
<tr>
<td>log1p</td>
<td>320</td>
</tr>
<tr>
<td>expm1</td>
<td>322</td>
</tr>
<tr>
<td>cbt</td>
<td>323</td>
</tr>
<tr>
<td>sqrt1pm1</td>
<td>324</td>
</tr>
<tr>
<td>powm1</td>
<td>325</td>
</tr>
<tr>
<td>hypot</td>
<td>326</td>
</tr>
<tr>
<td>Compile Time Power of a Runtime Base</td>
<td>326</td>
</tr>
<tr>
<td>Sinus Cardinal and Hyperbolic Sinus Cardinal Functions</td>
<td>328</td>
</tr>
<tr>
<td>Sinus Cardinal and Hyperbolic Sinus Cardinal Functions Overview</td>
<td>328</td>
</tr>
<tr>
<td>sinc_pi</td>
<td>330</td>
</tr>
<tr>
<td>sinhc_pi</td>
<td>331</td>
</tr>
<tr>
<td>Inverse Hyperbolic Functions</td>
<td>332</td>
</tr>
<tr>
<td>Inverse Hyperbolic Functions Overview</td>
<td>332</td>
</tr>
<tr>
<td>acosh</td>
<td>335</td>
</tr>
<tr>
<td>asinh</td>
<td>337</td>
</tr>
<tr>
<td>atanh</td>
<td>338</td>
</tr>
<tr>
<td>Floating Point Utilities</td>
<td>340</td>
</tr>
<tr>
<td>Rounding Truncation and Integer Conversion</td>
<td>340</td>
</tr>
<tr>
<td>Rounding Functions</td>
<td>340</td>
</tr>
<tr>
<td>Truncation Functions</td>
<td>340</td>
</tr>
<tr>
<td>Integer and Fractional Part Splitting (modf)</td>
<td>341</td>
</tr>
<tr>
<td>Floating-Point Classification: Infinities and NaNs</td>
<td>342</td>
</tr>
<tr>
<td>Sign Manipulation Functions</td>
<td>344</td>
</tr>
<tr>
<td>Floating-Point Representation Distance (ULP), and Finding Adjacent Floating-Point Values</td>
<td>344</td>
</tr>
<tr>
<td>Finding the Next Representable Value in a Specific Direction (nextafter)</td>
<td>345</td>
</tr>
<tr>
<td>Finding the Next Greater Representable Value (float_next)</td>
<td>346</td>
</tr>
<tr>
<td>Finding the Next Smaller Representable Value (float_prior)</td>
<td>346</td>
</tr>
<tr>
<td>Calculating the Representation Distance Between Two Floating Point Values (ULP) float_distance</td>
<td>347</td>
</tr>
<tr>
<td>Advancing a Floating Point Value by a Specific Representation Distance (ULP) float_advance</td>
<td>347</td>
</tr>
<tr>
<td>TR1 and C99 external "C" Functions</td>
<td>348</td>
</tr>
<tr>
<td>C99 and TR1 C Functions Overview</td>
<td>348</td>
</tr>
<tr>
<td>C99 C Functions</td>
<td>355</td>
</tr>
<tr>
<td>TR1 C Functions Quick Reference</td>
<td>361</td>
</tr>
<tr>
<td>Internal Details and Tools (Experimental)</td>
<td>368</td>
</tr>
</tbody>
</table>
Overview

About the Math Toolkit

This library is divided into three interconnected parts:

Statistical Distributions

Provides a reasonably comprehensive set of statistical distributions, upon which higher level statistical tests can be built.

The initial focus is on the central univariate distributions. Both continuous (like normal & Fisher) and discrete (like binomial & Poisson) distributions are provided.

A comprehensive tutorial is provided, along with a series of worked examples illustrating how the library is used to conduct statistical tests.

Mathematical Special Functions

Provides a small number of high quality special functions, initially these were concentrated on functions used in statistical applications along with those in the Technical Report on C++ Library Extensions.

The function families currently implemented are the gamma, beta & erf functions along with the incomplete gamma and beta functions (four variants of each) and all the possible inverses of these, plus digamma, various factorial functions, Bessel functions, elliptic integrals, sinus cardinals (along with their hyperbolic variants), inverse hyperbolic functions, Legendre/Laguerre/Hermite polynomials and various special power and logarithmic functions.

All the implementations are fully generic and support the use of arbitrary “real-number” types, although they are optimised for use with types with known-about significand (or mantissa) sizes: typically float, double or long double.

Implementation Toolkit

Provides many of the tools required to implement mathematical special functions: hopefully the presence of these will encourage other authors to contribute more special function implementations in the future. These tools are currently considered experimental: they are “exposed implementation details” whose interfaces and/or implementations may change.

There are helpers for the evaluation of infinite series, continued fractions and rational approximations.

There is a fairly comprehensive set of root finding and function minimisation algorithms: the root finding algorithms are both with and without derivative support.

A Remez algorithm implementation allows for the locating of minimax rational approximations.

There are also (experimental) classes for the manipulation of polynomials, for testing a special function against tabulated test data, and for the rapid generation of test data and/or data for output to an external graphing application.

Navigation

Used in combination with the configured browser key, the following keys act as handy shortcuts for common navigation tasks.
The following table shows how to access these from common browsers:

<table>
<thead>
<tr>
<th>Browser</th>
<th>Access Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Explorer</td>
<td>Alt+Key highlights the link only, so for example to move to the next topic you would need "Alt+n" followed by "Enter".</td>
</tr>
<tr>
<td>Firefox 2.0 and later</td>
<td>Alt+Shift+Key follows the link, so for example "Alt+Shift+n" will take you to the next topic.</td>
</tr>
<tr>
<td>Opera</td>
<td>Press Shift+Esc followed by the access key.</td>
</tr>
<tr>
<td>Konqueror</td>
<td>Press and release the Ctrl key, followed by the access key.</td>
</tr>
</tbody>
</table>

Some browsers also make these links available in their site-navigation toolbars: in Opera for example you can use Ctrl plus the left and right arrow keys to move between "next" and "previous" topics.

Directory and File Structure

boost/math

/concepts/ Prototype defining the essential features of a RealType class (see real_concept.hpp). Most applications will use double as the RealType (and short typedef names of distributions are reserved for this type where possible), a few will use float or long double, but it is also possible to use higher precision types like NTL::RR that conform to the requirements specified by real_concept.

/ constants/ Templated definition of some highly accurate math constants (in constants.hpp).

/distributions/ Distributions used in mathematics and, especially, statistics: Gaussian, Students-t, Fisher, Binomial etc

/policies/ Policy framework, for handling user requested behaviour modifications.

/special_functions/ Math functions generally regarded as 'special', like beta, cbrt, erf, gamma, lgamma, tgamma ... (Some of these are specified in C++, and C99/TR1, and perhaps TR2).

/tools/ Tools used by functions, like evaluating polynomials, continued fractions, root finding, precision and limits, and by tests. Some will find application outside this package.

boost/libs

/doc/ Documentation source files in Quickbook format processed into html and pdf formats.

/examples/ Examples and demos of using math functions and distributions.

/ performance/ Performance testing and tuning program.

/test/ Test files, in various .cpp files, most using Boost.Test (some with test data as .ipp files, usually generated using NTL RR type with ample precision for the type, often for precisions suitable for up to 256-bit significand real types).
Namespaces

All math functions and distributions are in namespace boost::math

So, for example, the Students-t distribution template in namespace boost::math is

```
template <class RealType> class students_t_distribution
```

and can be instantiated with the help of the reserved name students_t (for RealType double)

```
typedef students_t_distribution<double> students_t;
student_t mydist(10);
```

Functions not intended for use by applications are in boost::math::detail.

Functions that may have more general use, like digits (significand), max_value, min_value and epsilon are in boost::math::tools.

Policy and configuration information is in namespace boost::math::policies.

Calculation of the Type of the Result

The functions in this library are all overloaded to accept mixed floating point (or mixed integer and floating point type) arguments. So for example:

```
foo(1.0, 2.0);
foo(1.0f, 2);
foo(1.0, 2L);
```

etc, are all valid calls, as long as "foo" is a function taking two floating-point arguments. But that leaves the question:

"Given a special function with N arguments of types T1, T2, T3 ... TN, then what type is the result?"

If all the arguments are of the same (floating point) type then the result is the same type as the arguments.

Otherwise, the type of the result is computed using the following logic:

1. Any arguments that are not template arguments are disregarded from further analysis.
2. For each type in the argument list, if that type is an integer type then it is treated as if it were of type double for the purposes of further analysis.
3. If any of the arguments is a user-defined class type, then the result type is the first such class type that is constructible from all of the other argument types.
4. If any of the arguments is of type long double, then the result is of type long double.
5. If any of the arguments is of type double, then the result is of type double.
6. Otherwise the result is of type float.

For example:
cyl_bessel(2, 3.0);

Returns a double result, as does:

cyl_bessel(2, 3.0f);

as in this case the integer first argument is treated as a double and takes precedence over the float second argument. To get a float result we would need all the arguments to be of type float:

cyl_bessel_j(2.0f, 3.0f);

When one or more of the arguments is not a template argument then it doesn't effect the return type at all, for example:

sph_bessel(2, 3.0f);

returns a float, since the first argument is not a template argument and so doesn't effect the result: without this rule functions that take explicitly integer arguments could never return float.

And for user defined types, all of the following return an NTL::RR result:

cyl_bessel_j(0, NTL::RR(2));
cyl_bessel_j(NTL::RR(2), 3);
cyl_bessel_j(NTL::quad_float(2), NTL::RR(3));

In the last case, quad_float is convertible to RR, but not vice-versa, so the result will be an NTL::RR. Note that this assumes that you are using a patched NTL library.

These rules are chosen to be compatible with the behaviour of ISO/IEC 9899:1999 Programming languages - C and with the Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 5.

Error Handling

Quick Reference

Handling of errors by this library is split into two orthogonal parts:

- What kind of error has been raised?
- What should be done when the error is raised?

The kinds of errors that can be raised are:

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Error</td>
<td>Occurs when one or more arguments to a function are out of range.</td>
</tr>
<tr>
<td>Pole Error</td>
<td>Occurs when the particular arguments cause the function to be evaluated at a pole with no well defined residual value. For example if tgamma is evaluated at exactly -2, the function approaches different limiting values depending upon whether you approach from just above or just below -2. Hence the function has no well defined value at this point and a Pole Error will be raised.</td>
</tr>
<tr>
<td>Overflow Error</td>
<td>Occurs when the result is either infinite, or too large to represent in the numeric type being returned by the function.</td>
</tr>
</tbody>
</table>
Underflow Error

Occurs when the result is not zero, but is too small to be represented by any other value in the type being returned by the function.

Denormalisation Error

Occurs when the returned result would be a denormalised value.

Rounding Error

Occurs when the argument to one of the rounding functions `trunc`, `round` and `modf` cannot be represented as an integer type, i.e., it's outside the range of the result type.

Evaluation Error

Occurs when an internal error occurred that prevented the result from being evaluated: this should never occur, but if it does, then it's likely to be due to an iterative method not converging fast enough.

Indeterminate Result Error

Occurs when the result of a function is not defined for the values that were passed to it.

The action undertaken by each error condition is determined by the current Policy in effect. This can be changed program-wide by setting some configuration macros, or at namespace scope, or at the call site (by specifying a specific policy in the function call).

The available actions are:

- **throw_on_error**: Throws the exception most appropriate to the error condition.
- **errno_on_error**: Sets ::errno to an appropriate value, and then returns the most appropriate result.
- **ignore_error**: Ignores the error and simply returns the most appropriate result.
- **user_error**: Calls a user-supplied error handler.

The following tables show all the permutations of errors and actions, with the default action for each error shown in bold:

Table 1. Possible Actions for Domain Errors

<table>
<thead>
<tr>
<th>Action</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>throw_on_error</td>
<td>Throws std::domain_error</td>
</tr>
<tr>
<td>errno_on_error</td>
<td>Sets ::errno to EDOM and returns std::numeric_limits<T>::quiet_NaN()</td>
</tr>
<tr>
<td>ignore_error</td>
<td>Returns std::numeric_limits<T>::quiet_NaN()</td>
</tr>
<tr>
<td>user_error</td>
<td>Returns the result of boost::math::policies::user_domain_error: this function must be defined by the user.</td>
</tr>
</tbody>
</table>

Table 2. Possible Actions for Pole Errors

<table>
<thead>
<tr>
<th>Action</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>throw_on_error</td>
<td>Throws std::domain_error</td>
</tr>
<tr>
<td>errno_on_error</td>
<td>Sets ::errno to EDOM and returns std::numeric_limits<T>::quiet_NaN()</td>
</tr>
<tr>
<td>ignore_error</td>
<td>Returns std::numeric_limits<T>::quiet_NaN()</td>
</tr>
<tr>
<td>user_error</td>
<td>Returns the result of boost::math::policies::user_pole_error: this function must be defined by the user.</td>
</tr>
</tbody>
</table>
Table 3. Possible Actions for Overflow Errors

<table>
<thead>
<tr>
<th>Action</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>throw_on_error</td>
<td>Throws <code>std::overflow_error</code></td>
</tr>
<tr>
<td>errno_on_error</td>
<td>Sets <code>errno</code> to <code>ERANGE</code> and returns <code>std::numeric_limits<T>::infinity()</code></td>
</tr>
<tr>
<td>ignore_error</td>
<td>Returns <code>std::numeric_limits<T>::infinity()</code></td>
</tr>
<tr>
<td>user_error</td>
<td>Returns the result of <code>boost::math::policies::user_overflow_error</code>: this function must be defined by the user.</td>
</tr>
</tbody>
</table>

Table 4. Possible Actions for Underflow Errors

<table>
<thead>
<tr>
<th>Action</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>throw_on_error</td>
<td>Throws <code>std::underflow_error</code></td>
</tr>
<tr>
<td>errno_on_error</td>
<td>Sets <code>errno</code> to <code>ERANGE</code> and returns 0.</td>
</tr>
<tr>
<td>ignore_error</td>
<td>Returns 0</td>
</tr>
<tr>
<td>user_error</td>
<td>Returns the result of <code>boost::math::policies::user_underflow_error</code>: this function must be defined by the user.</td>
</tr>
</tbody>
</table>

Table 5. Possible Actions for Denorm Errors

<table>
<thead>
<tr>
<th>Action</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>throw_on_error</td>
<td>Throws <code>std::underflow_error</code></td>
</tr>
<tr>
<td>errno_on_error</td>
<td>Sets <code>errno</code> to <code>ERANGE</code> and returns the denormalised value.</td>
</tr>
<tr>
<td>ignore_error</td>
<td>Returns the denormalised value.</td>
</tr>
<tr>
<td>user_error</td>
<td>Returns the result of <code>boost::math::policies::user_denorm_error</code>: this function must be defined by the user.</td>
</tr>
</tbody>
</table>

Table 6. Possible Actions for Rounding Errors

<table>
<thead>
<tr>
<th>Action</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>throw_on_error</td>
<td>Throws <code>boost::math::rounding_error</code></td>
</tr>
<tr>
<td>errno_on_error</td>
<td>Sets <code>errno</code> to <code>ERANGE</code> and returns an unspecified value.</td>
</tr>
<tr>
<td>ignore_error</td>
<td>Returns the an unspecified value.</td>
</tr>
<tr>
<td>user_error</td>
<td>Returns the result of <code>boost::math::policies::user_rounding_error</code>: this function must be defined by the user.</td>
</tr>
</tbody>
</table>
Table 7. Possible Actions for Internal Evaluation Errors

<table>
<thead>
<tr>
<th>Action</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>throw_on_error</td>
<td>Throws <code>boost::math::evaluation_error</code></td>
</tr>
<tr>
<td>errno_on_error</td>
<td>Sets <code>errno</code> to <code>EDOM</code> and returns the closest approximation found.</td>
</tr>
<tr>
<td>ignore_error</td>
<td>Returns the closest approximation found.</td>
</tr>
<tr>
<td>user_error</td>
<td>Returns the result of <code>boost::math::policies::user_evaluation_error: this function must be defined by the user</code>.</td>
</tr>
</tbody>
</table>

Table 8. Possible Actions for Indeterminate Result Errors

<table>
<thead>
<tr>
<th>Action</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>throw_on_error</td>
<td>Throws <code>std::domain_error</code></td>
</tr>
<tr>
<td>errno_on_error</td>
<td>Sets <code>errno</code> to <code>EDOM</code> and returns the same value as <code>ignore_error</code>.</td>
</tr>
<tr>
<td>ignore_error</td>
<td>Returns a default result that depends on the function where the error occurred.</td>
</tr>
<tr>
<td>user_error</td>
<td>Returns the result of <code>boost::math::policies::user_indeterminate_result_error: this function must be defined by the user</code>.</td>
</tr>
</tbody>
</table>

Rationale

The flexibility of the current implementation should be reasonably obvious, the default behaviours were chosen based on feedback during the formal review of this library. It was felt that:

- Genuine errors should be flagged with exceptions rather than following C-compatible behaviour and setting `errno`.
- Numeric underflow and denormalised results were not considered to be fatal errors in most cases, so it was felt that these should be ignored.

Finding More Information

There are some pre-processor macro defines that can be used to change the policy defaults. See also the policy section.

An example is at the Policy tutorial in Changing the Policy Defaults.

Full source code of this typical example of passing a ‘bad’ argument (negative degrees of freedom) to Student’s t distribution is in the error handling example.

The various kind of errors are described in more detail below.

Domain Errors

When a special function is passed an argument that is outside the range of values for which that function is defined, then the function returns the result of:

```cpp
boost::math::policies::raise_domain_error<T>(FunctionName, Message, Val, Policy);
```

Where `T` is the floating-point type passed to the function, `FunctionName` is the name of the function, `Message` is an error message describing the problem, `Val` is the value that was out of range, and `Policy` is the current policy in use for the function that was called.
The default policy behaviour of this function is to throw a std::domain_error C++ exception. But if the Policy is to ignore the error, or set global ::errno, then a NaN will be returned.

This behaviour is chosen to assist compatibility with the behaviour of ISO/IEC 9899:1999 Programming languages - C and with the Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 6:

"Each of the functions declared above shall return a NaN (Not a Number) if any argument value is a NaN, but it shall not report a domain error. Otherwise, each of the functions declared above shall report a domain error for just those argument values for which:

"the function description’s Returns clause explicitly specifies a domain, and those arguments fall outside the specified domain; or

"the corresponding mathematical function value has a non-zero imaginary component; or

"the corresponding mathematical function is not mathematically defined.

"Note 2: A mathematical function is mathematically defined for a given set of argument values if it is explicitly defined for that set of argument values or if its limiting value exists and does not depend on the direction of approach."

Note that in order to support information-rich error messages when throwing exceptions, Message must contain a Boost.Format recognised format specifier: the argument Val is inserted into the error message according to the specifier used.

For example if Message contains a "%1%" then it is replaced by the value of Val to the full precision of T, where as "%.3g" would contain the value of Val to 3 digits. See the Boost.Format documentation for more details.

Evaluation at a pole

When a special function is passed an argument that is at a pole without a well defined residual value, then the function returns the result of:

```cpp
boost::math::policies::raise_pole_error<T>(FunctionName, Message, Val, Policy);
```

Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message describing the problem, Val is the value of the argument that is at a pole, and Policy is the current policy in use for the function that was called.

The default behaviour of this function is to throw a std::domain_error exception. But error handling policies can be used to change this, for example to ignore_error and return NaN.

Note that in order to support information-rich error messages when throwing exceptions, Message must contain a Boost.Format recognised format specifier: the argument val is inserted into the error message according to the specifier used.

For example if Message contains a "%1%" then it is replaced by the value of val to the full precision of T, where as "%.3g" would contain the value of val to 3 digits. See the Boost.Format documentation for more details.

Numeric Overflow

When the result of a special function is too large to fit in the argument floating-point type, then the function returns the result of:

```cpp
boost::math::policies::raise_overflow_error<T>(FunctionName, Message, Policy);
```

Where T is the floating-point type passed to the function, FunctionName is the name of the function, Message is an error message describing the problem, and Policy is the current policy in use for the function that was called.

The default policy for this function is that std::overflow_error C++ exception is thrown. But if, for example, an ignore_error policy is used, then returns std::numeric_limits<T>::infinity(). In this situation if the type T doesn't support infinities, the maximum value for the type is returned.
Numeric Underflow

If the result of a special function is known to be non-zero, but the calculated result underflows to zero, then the function returns the result of:

```cpp
boost::math::policies::raise_underflow_error<T>(FunctionName, Message, Policy);
```

Where `T` is the floating point type passed to the function, `FunctionName` is the name of the function, `Message` is an error message describing the problem, and `Policy` is the current policy in use for the called function.

The default version of this function returns zero. But with another policy, like `throw_on_error`, throws an `std::underflow_error` C++ exception.

Denormalisation Errors

If the result of a special function is a denormalised value `z` then the function returns the result of:

```cpp
boost::math::policies::raise_denorm_error<T>(z, FunctionName, Message, Policy);
```

Where `T` is the floating point type passed to the function, `FunctionName` is the name of the function, `Message` is an error message describing the problem, and `Policy` is the current policy in use for the called function.

The default version of this function returns `z`. But with another policy, like `throw_on_error` throws an `std::underflow_error` C++ exception.

Evaluation Errors

When a special function calculates a result that is known to be erroneous, or where the result is incalculable then it calls:

```cpp
boost::math::policies::raise_evaluation_error<T>(FunctionName, Message, Val, Policy);
```

Where `T` is the floating point type passed to the function, `FunctionName` is the name of the function, `Message` is an error message describing the problem, `Val` is the erroneous value, and `Policy` is the current policy in use for the called function.

The default behaviour of this function is to throw a `boost::math::evaluation_error`.

Note that in order to support information rich error messages when throwing exceptions, `Message` must contain a `Boost.Format` recognised format specifier: the argument `val` is inserted into the error message according to the specifier used.

For example if `Message` contains a "%.1f" then it is replaced by the value of `val` to the full precision of `T`, where as "%.3g" would contain the value of `val` to 3 digits. See the `Boost.Format` documentation for more details.

Indeterminate Result Errors

When the result of a special function is indeterminate for the value that was passed to it, then the function returns the result of:

```cpp
boost::math::policies::raise_overflow_error<T>(FunctionName, Message, Val, Default, Policy);
```

Where `T` is the floating-point type passed to the function, `FunctionName` is the name of the function, `Message` is an error message describing the problem, `Val` is the value for which the result is indeterminate, `Default` is an alternative default result that must be returned for `ignore_error` and `errno_on_error` policies, and `Policy` is the current policy in use for the function that was called.

The default policy for this function is `ignore_error`: note that this error type is reserved for situations where the result is mathematically undefined or indeterminate, but there is none the less a convention for what the result should be: for example the C99 standard specifies that the result of `0^0` is 1, even though the result is actually mathematically indeterminate.
Rounding Errors

When one of the rounding functions `round`, `trunc` or `modf` is called with an argument that has no integer representation, or is too large to be represented in the result type then the value returned is the result of a call to:

```cpp
boost::math::policies::raise_rounding_error<T>(FunctionName, Message, Val, Policy);
```

Where `T` is the floating point type passed to the function, `FunctionName` is the name of the function, `Message` is an error message describing the problem, `Val` is the erroneous argument, and `Policy` is the current policy in use for the called function.

The default behaviour of this function is to throw a `boost::math::rounding_error`.

Note that in order to support information rich error messages when throwing exceptions, `Message` must contain a Boost.Format recognised format specifier: the argument `val` is inserted into the error message according to the specifier used.

For example if `Message` contains a "%1%" then it is replaced by the value of `val` to the full precision of `T`, where as "%3g" would contain the value of `val` to 3 digits. See the Boost.Format documentation for more details.

Errors from typecasts

Many special functions evaluate their results at a higher precision than their arguments in order to ensure full machine precision in the result: for example, a function passed a float argument may evaluate its result using double precision internally. Many of the errors listed above may therefore occur not during evaluation, but when converting the result to the narrower result type. The function:

```cpp
template <class T, class Policy, class U>
T checked_narrowing_cast(U const& val, const char* function);
```

Is used to perform these conversions, and will call the error handlers listed above on overflow, underflow or denormalisation.

Compilers

This section contains some information about how various compilers work with this library. It is not comprehensive and updated experiences are always welcome. Some effort has been made to suppress unhelpful warnings but it is difficult to achieve this on all systems.
Table 9. Supported/Tested Compilers

<table>
<thead>
<tr>
<th>Platform</th>
<th>Compiler</th>
<th>Has long double support</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>MSVC 7.1 and later</td>
<td>Yes</td>
<td>All tests OK. We aim to keep our headers warning free at level 4 with this compiler.</td>
</tr>
<tr>
<td>Windows</td>
<td>Intel 8.1 and later</td>
<td>Yes</td>
<td>All tests OK. We aim to keep our headers warning free at level 4 with this compiler. However, The tests cases tend to generate a lot of warnings relating to numeric underflow of the test data: these are harmless.</td>
</tr>
<tr>
<td>Windows</td>
<td>GNU Mingw32 C++</td>
<td>Yes</td>
<td>All tests OK. We aim to keep our headers warning free with -Wall with this compiler.</td>
</tr>
<tr>
<td>Windows</td>
<td>GNU Cygwin C++</td>
<td>No</td>
<td>All tests OK. We aim to keep our headers warning free with -Wall with this compiler. Long double support has been disabled because there are no native long double C std library functions available.</td>
</tr>
<tr>
<td>Windows</td>
<td>Borland C++ 5.8.2 (Developer studio 2006)</td>
<td>No</td>
<td>We have only partial compatibility with this compiler: Long double support has been disabled because the native long double C standard library functions really only forward to the double versions. This can result in unpredictable behaviour when using the long double overloads: for example \texttt{sqrt1} applied to a finite value, can result in an infinite result. Some functions still fail to compile, there are no known workarounds at present.</td>
</tr>
<tr>
<td>Linux</td>
<td>GNU C++ 3.4 and later</td>
<td>Yes</td>
<td>All tests OK. We aim to keep our headers warning free with -Wall with this compiler.</td>
</tr>
<tr>
<td>Linux</td>
<td>Intel C++ 10.0 and later</td>
<td>Yes</td>
<td>All tests OK. We aim to keep our headers warning free with -Wall with this compiler. However, The tests cases tend to generate a lot of warnings relating to numeric underflow of the test data: these are harmless.</td>
</tr>
<tr>
<td>Platform</td>
<td>Compiler</td>
<td>Has long double support</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Linux</td>
<td>Intel C++ 8.1 and 9.1</td>
<td>No</td>
<td>All tests OK. Long double support has been disabled with these compiler releases because calling the standard library long double math functions can result in a segfault. The issue is Linux distribution and glibc version specific and is Intel bug report #409291. Fully up to date releases of Intel 9.1 (post version 1_cc_c_9.1.046) shouldn’t have this problem. If you need long double support with this compiler, then comment out the define of BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS at line 55 of boost/math/tools/config.hpp. We aim to keep our headers warning free with -Wall with this compiler.</td>
</tr>
<tr>
<td>Linux</td>
<td>QLogic PathScale 3.0</td>
<td>Yes</td>
<td>Some tests involving conceptual checks fail to build, otherwise there appear to be no issues.</td>
</tr>
<tr>
<td>Linux</td>
<td>Sun Studio 12</td>
<td>Yes</td>
<td>Some tests involving function overload resolution fail to build, these issues should be rarely encountered in practice.</td>
</tr>
<tr>
<td>Solaris</td>
<td>Sun Studio 12</td>
<td>Yes</td>
<td>Some tests involving function overload resolution fail to build, these issues should be rarely encountered in practice.</td>
</tr>
<tr>
<td>Solaris</td>
<td>GNU C++ 4.x</td>
<td>Yes</td>
<td>All tests OK.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>We aim to keep our headers warning free with -Wall with this compiler.</td>
</tr>
<tr>
<td>HP Tru64</td>
<td>Compaq C++ 7.1</td>
<td>Yes</td>
<td>All tests OK.</td>
</tr>
<tr>
<td>HP-UX Itanium</td>
<td>HP aCC 6.x</td>
<td>Yes</td>
<td>All tests OK.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unfortunately this compiler emits quite a few warnings from libraries upon which we depend (TR1, Array etc).</td>
</tr>
<tr>
<td>HP-UX PA-RISC</td>
<td>GNU C++ 3.4</td>
<td>No</td>
<td>All tests OK.</td>
</tr>
<tr>
<td>Apple Mac OS X, Intel</td>
<td>Darwin/GNU C++ 4.x</td>
<td>Yes</td>
<td>All tests OK.</td>
</tr>
<tr>
<td>Apple Mac OS X, PowerPC</td>
<td>Darwin/GNU C++ 4.x</td>
<td>No</td>
<td>All tests OK.</td>
</tr>
<tr>
<td>IMB AIX</td>
<td>IBM xlc 5.3</td>
<td>Yes</td>
<td>All tests pass except for our fpclassify tests which fail due to a bug in std::numeric_limits, the bug effects the test code, not fpclassify itself. The IBM compiler group are aware of the problem.</td>
</tr>
</tbody>
</table>

No Intel C++ 8.1 and 9.1 Linux

Some tests involving conceptual checks fail to build, otherwise there appear to be no issues.

Yes QLogic PathScale 3.0 Linux

Some tests involving conceptual checks fail to build, otherwise there appear to be no issues.

Yes Sun Studio 12 Linux

Some tests involving function overload resolution fail to build, these issues should be rarely encountered in practice.

Yes Sun Studio 12 Solaris

Some tests involving function overload resolution fail to build, these issues should be rarely encountered in practice.

Yes GNU C++ 4.x Solaris

All tests OK.

Yes Compaq C++ 7.1 HP Tru64

All tests OK.

Yes HP aCC 6.x HP-UX Itanium

All tests OK.

No GNU C++ 3.4 HP-UX PA-RISC

All tests OK.

Yes Darwin/GNU C++ 4.x Apple Mac OS X, Intel

All tests OK.

Yes Darwin/GNU C++ 4.x Apple Mac OS X, PowerPC

All tests OK.

No Darwin/GNU C++ 4.x Apple Mac OS X, PowerPC

All tests OK.

No Darwin/GNU C++ 4.x Apple Mac OS X, PowerPC

All tests OK.
Table 10. Unsupported Compilers

<table>
<thead>
<tr>
<th>Platform</th>
<th>Compiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>Borland C++ 5.9.2 (Borland Developer Studio 2007)</td>
</tr>
<tr>
<td>Windows</td>
<td>MSVC 6 and 7</td>
</tr>
</tbody>
</table>

If you're compiler or platform is not listed above, please try running the regression tests: cd into boost-root/libs/math/test and do a:

```
  bjam mytoolset
```

where "mytoolset" is the name of the Boost.Build toolset used for your compiler. The chances are that many of the accuracy tests will fail at this stage - don't panic - the default acceptable error tolerances are quite tight, especially for long double types with an extended exponent range (these cause more extreme test cases to be executed for some functions). You will need to cast an eye over the output from the failing tests and make a judgement as to whether the error rates are acceptable or not.

Configuration and Policies

Policies are a powerful fine-grain mechanism that allow you to customise the behaviour of this library according to your needs. There is more information available in the policy tutorial and the policy reference.

Generally speaking unless you find that the default policy behaviour when encountering 'bad' argument values does not meet your needs, you should not need to worry about policies.

Policies are a compile-time mechanism that allow you to change error-handling or calculation precision either program wide, or at the call site.

Although the policy mechanism itself is rather complicated, in practice it is easy to use, and very flexible.

Using policies you can control:

- How results from 'bad' arguments are handled, including those that cannot be fully evaluated.
- How accuracy is controlled by internal promotion to use more precise types.
- What working precision should be used to calculate results.
- What to do when a mathematically undefined function is used: Should this raise a run-time or compile-time error?
- Whether discrete functions, like the binomial, should return real or only integral values, and how they are rounded.
- How many iterations a special function is permitted to perform in a series evaluation or root finding algorithm before it gives up and raises an evaluation_error.

You can control policies:

- Using macros to change any default policy: the is the prefered method for installation wide policies.
- At your chosen namespace scope for distributions and/or functions: this is the prefered method for project, namespace, or translation unit scope policies.
- In an ad-hoc manner by passing a specific policy to a special function, or to a statistical distribution.

Thread Safety

The library is fully thread safe and re-entrant provided the function and class templates in the library are instantiated with built-in floating point types: i.e. the types float, double and long double.
However, the library is not thread safe when used with user-defined (i.e. class type) numeric types.

The reason for the latter limitation is the need to initialise symbolic constants using constructs such as:

```cpp
static const T coefficient_array = { ... list of values ... };
```

Which is always thread safe when T is a built-in floating point type, but not when T is a user defined type: as in this case there is a need for T's constructors to be run, leading to potential race conditions.

This limitation may be addressed in a future release.

Performance

By and large the performance of this library should be acceptable for most needs. However, you should note that the library's primary emphasis is on accuracy and numerical stability, and not speed.

In terms of the algorithms used, this library aims to use the same "best of breed" algorithms as many other libraries: the principle difference is that this library is implemented in C++ - taking advantage of all the abstraction mechanisms that C++ offers - where as most traditional numeric libraries are implemented in C or FORTRAN. Traditionally languages such as C or FORTRAN are perceived as easier to optimise than more complex languages like C++, so in a sense this library provides a good test of current compiler technology, and the "abstraction penalty" - if any - of C++ compared to other languages.

The two most important things you can do to ensure the best performance from this library are:

1. Turn on your compilers optimisations: the difference between "release" and "debug" builds can easily be a factor of 20.

2. Pick your compiler carefully: performance differences of up to 8 fold have been found between some windows compilers for example.

The performance section contains more information on the performance of this library, what you can do to fine tune it, and how this library compares to some other open source alternatives.

Building the Library

The first thing you need to ask yourself is "Do I need to build anything at all?" as the bulk of this library is header only: meaning you can use it just by #including the necessary header(s). Refer to C99 and C++ TR1 C-style Functions for pros and cons of using the TR1 components as opposed to the header only ones.

The only time you need to build the library is if you want to use the extern "C" functions declared in `<boost/math/tr1.hpp>`. To build this using Boost.Build, from a commandline boost-root directory issue a command like:

```
bjam toolset=gcc --with-math install
```

will do the job on Linux, while:

```
bjam toolset=msvc --with-math --build-type=complete stage
```

will work better on Windows (leaving libraries built in sub-folder /stage below your Boost root directory). Either way you should consult the getting started guide for more information.

You can also build the libraries from your favourite IDE or command line tool: each extern "C" function declared in `<boost/math/tr1.hpp>` has its own source file with the same name in `libs/math/src/tr1`. Just select the sources corresponding to the functions you are using and build them into a library, or else add them directly to your project. Note that the directory `libs/math/src/tr1` will need to be in your compiler's #include path as well as the boost-root directory (MSVC Tools, Options, Projects and Solutions, VC++ Directories, Include files).
Note

If you are using a Windows compiler that supports auto-linking and you have built the sources yourself (or added them directly to your project) then you will need to prevent `<boost/math/tr1.hpp>` from trying to auto-link to the binaries that Boost.Build generates. You can do this by defining either `BOOST_MATH_NO_LIB` or `BOOST_ALL_NO_LIB` at project level (so the defines get passed to each compiler invocation).

Optionally the sources in `libs/math/src/tr1` have support for using `libs/math/src/tr1/pch.hpp` as a precompiled header if your compiler supports precompiled headers. Note that normally this header is a do-nothing include: to activate the header so that it #includes everything required by all the sources you will need to define `BOOST_BUILD_PCH_ENABLED` on the command line, both when building the pre-compiled header and when building the sources. Boost.Build will do this automatically when appropriate.

Building the Examples

The examples are all located in `libs/math/example`, they can all be built without reference to any external libraries, either with Boost.Build using the supplied Jamfile, or from your compiler's command line. The only requirement is that the Boost headers are in your compilers #include search path.

Building the Tests

The tests are located in `libs/math/test` and are best built using Boost.Build and the supplied Jamfile. If you plan to build them separately from your favourite IDE then you will need to add `libs/math/test` to the list of your compiler's search paths.

You will also need to build and link to the Boost.Regex library for many of the tests: this can be built from the command line by following the getting started guide, using a command such as:

```
bjam toolset=gcc --with-regex install
```

or

```
bjam toolset=msvc --with-regex --build-type=complete stage
```

depending on whether you are on Linux or Windows.

Many of the tests have optional precompiled header support using the header `libs/math/test/pch.hpp`. Note that normally this header is a do-nothing include: to activate the header so that it #includes everything required by all the sources you will need to define `BOOST_BUILD_PCH_ENABLED` on the command line, both when building the pre-compiled header and when building the sources. Boost.Build will do this automatically when appropriate.

History and What's New

Boost-1.41.0

• Significantly improved performance for the incomplete gamma function and its inverse.

Boost-1.40.0

• Added support for MPFR as a bignum type.
• Added some full specializations of the policy classes to reduce compile times.
• Added logistic and hypergeometric distributions, from Gautam Sewani's Google Summer of Code project.
• Added Laplace distribution submitted by Thijs van den Berg.
• Updated performance test code to include new distributions, and improved the performance of the non-central distributions.
• Added SSE2 optimised Lanczos approximation code, from Gautam Sewani’s Google Summer of Code project.

• Fixed bug in cyl_bessel_i that used an incorrect approximation for \(\nu = 0.5 \), also affects the non-central Chi Square Distribution when \(\nu = 3 \), see bug report #2877.

• Fixed minor bugs #2873.

Boost-1.38.0

• Added Johan Råde’s optimised floating point classification routines.

• Fixed code so that it compiles in GCC’s -pedantic mode (bug report #1451).

Boost-1.37.0

• Improved accuracy and testing of the inverse hypergeometric functions.

Boost-1.36.0

• Added Noncentral Chi Squared Distribution.

• Added Noncentral Beta Distribution.

• Added Noncentral F Distribution.

• Added Noncentral T Distribution.

• Added Exponential Integral Functions.

• Added Zeta Function.

• Added Rounding and Truncation functions.

• Added Compile time powers of runtime bases.

• Added SSE2 optimizations for Lanczos evaluation.

Boost-1.35.0: Post Review First Official Release

• Added Policy based framework that allows fine grained control over function behaviour.

• **Breaking change:** Changed default behaviour for domain, pole and overflow errors to throw an exception (based on review feedback), this behaviour can be customised using Policy’s.

• **Breaking change:** Changed exception thrown when an internal evaluation error occurs to boost::math::evaluation_error.

• **Breaking change:** Changed discrete quantiles to return an integer result: this is anything up to 20 times faster than finding the true root, this behaviour can be customised using Policy’s.

• Polynomial/rational function evaluation is now customisable and hopefully faster than before.

• Added performance test program.

Milestone 4: Second Review Candidate (1st March 2007)

• Moved Xiaogang Zhang’s Bessel Functions code into the library, and brought them into line with the rest of the code.

• Added C# "Distribution Explorer” demo application.
Milestone 3: First Review Candidate (31st Dec 2006)

- Implemented the main probability distribution and density functions.
- Implemented digamma.
- Added more factorial functions.
- Implemented the Hermite, Legendre and Laguerre polynomials plus the spherical harmonic functions from TR1.
- Moved Xiaogang Zhang's elliptic integral code into the library, and brought them into line with the rest of the code.
- Moved Hubert Holin's existing Boost.Math special functions into this library and brought them into line with the rest of the code.

Milestone 2: Released September 10th 2006

- Implement preview release of the statistical distributions.
- Added statistical distributions tutorial.
- Implemented root finding algorithms.
- Implemented the inverses of the incomplete gamma and beta functions.
- Rewrite erf/erfc as rational approximations (valid to 128-bit precision).
- Integrated the statistical results generated from the test data with Boost.Test: uses a database of expected results, indexed by test, floating point type, platform, and compiler.
- Improved lgamma near 1 and 2 (rational approximations).
- Improved erf/erfc inverses (rational approximations).
- Implemented Rational function generation (the Remez method).

Milestone 1: Released March 31st 2006

- Implement gamma/beta/erf functions along with their incomplete counterparts.
- Generate high quality test data, against which future improvements can be judged.
- Provide tools for the evaluation of infinite series, continued fractions, and rational functions.
- Provide tools for testing against tabulated test data, and collecting statistics on error rates.
- Provide sufficient docs for people to be able to find their way around the library.

SVN Revisions:

Sandbox and trunk last synchronised at revision: 56669.

C99 and C++ TR1 C-style Functions

Many of the special functions included in this library are also a part of the either the C99 Standard ISO/IEC 9899:1999 or the Technical Report on C++ Library Extensions. Therefore this library includes a thin wrapper header boost/math/tr1.hpp that provides compatibility with these two standards.

There are various pros and cons to using the library in this way:

Pros:
• The header to include is lightweight (i.e. fast to compile).

• The functions have extern "C" linkage, and so are usable from other languages (not just C and C++).

• C99 and C++ TR1 Standard compatibility.

Cons:

• You will need to compile and link to the external Boost.Math libraries.

• Limited to support for the types, float, double and long double.

• Error handling is handled via setting ::errno and returning NaN's and infinities: this may be less flexible than an C++ exception based approach.

Note

The separate libraries are required only if you choose to use boost/math/tr1.hpp rather than some other Boost.Math header, the rest of Boost.Math remains header-only.

The separate libraries required in order to use tr1.hpp can be compiled using bjam from within the libs/math/build directory, or from the Boost root directory using the usual Boost-wide install procedure. Alternatively the source files are located in libs/math/src and each have the same name as the function they implement. The various libraries are named as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>boost_math_c99f-<suffix></td>
<td>float</td>
<td>C99 Functions</td>
</tr>
<tr>
<td>boost_math_c99-<suffix></td>
<td>double</td>
<td>C99 Functions</td>
</tr>
<tr>
<td>boost_math_c99l-<suffix></td>
<td>long double</td>
<td>C99 Functions</td>
</tr>
<tr>
<td>boost_math_tr1f-<suffix></td>
<td>float</td>
<td>TR1 Functions</td>
</tr>
<tr>
<td>boost_math_tr1-<suffix></td>
<td>double</td>
<td>TR1 Functions</td>
</tr>
<tr>
<td>boost_math_tr1l-<suffix></td>
<td>long double</td>
<td>TR1 Functions</td>
</tr>
</tbody>
</table>

Where <suffix> encodes the compiler and build options used to build the libraries: for example "libboost_math_tr1-vc80-mt-gd.lib" would be the statically linked TR1 library to use with Visual C++ 8.0, in multithreading debug mode, with the DLL VC++ runtime, where as "boost_math_tr1-vc80-mt.lib" would be import library for the TR1 DLL to be used with Visual C++ 8.0 with the release multithreaded DLL VC++ runtime. Refer to the getting started guide for a full explanation of the <suffix> meanings.

Note

Visual C++ users will typically have the correct library variant to link against selected for them by boost/math/tr1.hpp based on your compiler settings.

Users will need to define BOOST_MATH_TR1_DYN_LINK when building their code if they want to link against the DLL versions of these libraries rather than the static versions.

Users can disable auto-linking by defining BOOST_MATH_TR1_NO_LIB when building: this is typically only used when linking against a customised build of the libraries.
Usage Recommendations

This library now presents the user with a choice:

• To include the header only versions of the functions and have an easier time linking, but a longer compile time.
• To include the TR1 headers and link against an external library.

Which option you choose depends largely on how you prefer to work and how your system is set up.

For example a casual user who just needs the acosh function, would probably be better off including `<boost/math/special_functions/acosh.hpp>` and using `boost::math::acosh(x)` in their code.

However, for large scale software development where compile times are significant, and where the Boost libraries are already built and installed on the system, then including `<boost/math/tr1.hpp>` and using `boost::math::tr1::acosh(x)` will speed up compile times, reduce object files sizes (since there are no templates being instantiated any more), and also speed up debugging runtimes - since the externally compiled libraries can be compiler optimised, rather than built using full settings - the difference in performance between release and debug builds can be as much as 20 times, so for complex applications this can be a big win.

Supported C99 Functions

See also the quick reference guide for these functions.
namespace boost{ namespace math{ namespace tr1{ extern "C"

typedef unspecified float_t;
typedef unspecified double_t;

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

double erf(double x);
float erff(float x);
long double erfllong double lround(double x);
long long llroundf(float x);
long long llroundl(long double x);

long long lround(double x);
long long llroundf(float x);
long long llroundl(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

long lroundl(long double x);
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);
double round(double x);
float roundf(float x);
long double roundl(long double x);
double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);
double trunc(double x);
float truncf(float x);
long double truncl(long double x);
}

Support TR1 Functions

See also the quick reference guide for these functions.
namespace boost{ namespace math{ namespace tr1{ extern "C"{

 // [5.2.1.1] associated Laguerre polynomials:
 double assoc_laguerre(unsigned n, unsigned m, double x);
 float assoc_laguerref(unsigned n, unsigned m, float x);
 long double assoc_laguerrel(unsigned n, unsigned m, long double x);

 // [5.2.1.2] associated Legendre functions:
 double assoc_legendre(unsigned l, unsigned m, double x);
 float assoc_legendref(unsigned l, unsigned m, float x);
 long double assoc_legendrel(unsigned l, unsigned m, long double x);

 // [5.2.1.3] beta function:
 double beta(double x, double y);
 float betaf(float x, float y);
 long double betal(long double x, long double y);

 // [5.2.1.4] (complete) elliptic integral of the first kind:
 double comp_ellint_1(double k);
 float comp_ellint_1f(float k);
 long double comp_ellint_1l(long double k);

 // [5.2.1.5] (complete) elliptic integral of the second kind:
 double comp_ellint_2(double k);
 float comp_ellint_2f(float k);
 long double comp_ellint_2l(long double k);

 // [5.2.1.6] (complete) elliptic integral of the third kind:
 double comp_ellint_3(double k, double nu);
 float comp_ellint_3f(float k, float nu);
 long double comp_ellint_3l(long double k, long double nu);

 // [5.2.1.8] regular modified cylindrical Bessel functions:
 double cyl_bessel_i(double nu, double x);
 float cyl_bessel_if(float nu, float x);
 long double cyl_bessel_il(long double nu, long double x);

 // [5.2.1.9] cylindrical Bessel functions (of the first kind):
 double cyl_bessel_j(double nu, double x);
 float cyl_bessel_jf(float nu, float x);
 long double cyl_bessel_jl(long double nu, long double x);

 // [5.2.1.10] irregular modified cylindrical Bessel functions:
 double cyl_bessel_k(double nu, double x);
 float cyl_bessel_kf(float nu, float x);
 long double cyl_bessel_kl(long double nu, long double x);

 // [5.2.1.11] cylindrical Neumann functions:
 // cylindrical Bessel functions (of the second kind):
 double cyl_neumann(double nu, double x);
 float cyl_neumannf(float nu, float x);
 long double cyl_neumannl(long double nu, long double x);

 // [5.2.1.12] (incomplete) elliptic integral of the first kind:
 double ellint_1(double k, double phi);
 float ellint_1f(float k, float phi);
 long double ellint_1l(long double k, long double phi);

 // [5.2.1.13] (incomplete) elliptic integral of the second kind:
 double ellint_2(double k, double phi);
 float ellint_2f(float k, float phi);
 long double ellint_2l(long double k, long double phi);

} // namespace tr1{ namespace math{ namespace boost} // namespace
}
In addition sufficient additional overloads of the double versions of the above functions are provided, so that calling the function with any mixture of float, double, long double, or integer arguments is supported, with the return type determined by the result type calculation rules.
Currently Unsupported C99 Functions

```c
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

double log2(double x);
float log2f(float x);
long double log2l(long double x);

double logb(double x);
float logbf(float x);
long double logbl(long double x);

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

double nan(const char *str);
float nanf(const char *str);
long double nanl(const char *str);

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

double remquo(double x, double y, int *pquo);
float remquof(float x, float y, int *pquo);
long double remquol(long double x, long double y, int *pquo);

double rint(double x);
float rintf(float x);
long double rintl(long double x);

double scalbln(double x, long ex);
```
Currently Unsupported TR1 Functions

```cpp
// [5.2.1.7] confluent hypergeometric functions:
double conf_hyperg(double a, double c, double x);
float conf_hypergf(float a, float c, float x);
long double conf_hypergl(long double a, long double c, long double x);

// [5.2.1.17] hypergeometric functions:
double hyperg(double a, double b, double c, double x);
float hypergf(float a, float b, float c, float x);
long double hypergl(long double a, long double b, long double c, long double x);
```

Contact Info and Support

The main support for this library is via the Boost mailing lists:

- Use the **boost-user list** for general support questions.
- Use the **boost-developer list** for discussion about implementation and or submission of extensions.

You can also find JM at john - at - johnmaddock.co.uk and PAB at pbristow - at - hetp.u-net.com.

Statistical Distributions and Functions

Statistical Distributions Tutorial

This library is centred around statistical distributions, this tutorial will give you an overview of what they are, how they can be used, and provides a few worked examples of applying the library to statistical tests.

Overview of Distributions

Headers and Namespaces

All the code in this library is inside namespace boost::math.

In order to use a distribution `my_distribution` you will need to include either the header `<boost/math/distributions/my_distribution.hpp>` or the "include everything" header: `<boost/math/distributions.hpp>`.

For example, to use the Students-t distribution include either `<boost/math/distributions/students_t.hpp>` or `<boost/math/distributions.hpp>`

Distributions are Objects

Each kind of distribution in this library is a class type - an object.

Policies provide fine-grained control of the behaviour of these classes, allowing the user to customise behaviour such as how errors are handled, or how the quantiles of discrete distributions behave.
Tip

If you are familiar with statistics libraries using functions, and 'Distributions as Objects' seem alien, see the comparison to other statistics libraries.

Making distributions class types does two things:

- It encapsulates the kind of distribution in the C++ type system; so, for example, Students-t distributions are always a different C++ type from Chi-Squared distributions.

- The distribution objects store any parameters associated with the distribution: for example, the Students-t distribution has a degrees of freedom parameter that controls the shape of the distribution. This degrees of freedom parameter has to be provided to the Students-t object when it is constructed.

Although the distribution classes in this library are templates, there are typedefs on type double that mostly take the usual name of the distribution (except where there is a clash with a function of the same name: beta and gamma, in which case using the default template arguments - RealType = double - is nearly as convenient). Probably 95% of uses are covered by these typedefs:

```cpp
using namespace boost::math;

// Construct a students_t distribution with 4 degrees of freedom:
students_t d1(4);

// Construct a double-precision beta distribution
// with parameters a = 10, b = 20
beta_distribution<> d2(10, 20); // Note: _distribution<> suffix!
```

If you need to use the distributions with a type other than double, then you can instantiate the template directly: the names of the templates are the same as the double typedef but with_distribution appended, for example: Students_t Distribution or Binomial Distribution:

```cpp
// Construct a students_t distribution, of float type,
// with 4 degrees of freedom:
students_t_distribution<float> d3(4);

// Construct a binomial distribution, of long double type,
// with probability of success 0.3
// and 20 trials in total:
binomial_distribution<long double> d4(20, 0.3);
```

The parameters passed to the distributions can be accessed via getter member functions:

```cpp
d1.degrees_of_freedom(); // returns 4.0
```

This is all well and good, but not very useful so far. What we often want is to be able to calculate the cumulative distribution functions and quantiles etc for these distributions.

Generic operations common to all distributions are non-member functions

Want to calculate the PDF (Probability Density Function) of a distribution? No problem, just use:

```cpp
pdf(my_dist, x); // Returns PDF (density) at point x of distribution my_dist.
```

Or how about the CDF (Cumulative Distribution Function):
cdf(my_dist, x); // Returns CDF (integral from -infinity to point x)
 // of distribution my_dist.

And quantiles are just the same:

quantile(my_dist, p); // Returns the value of the random variable x
 // such that cdf(my_dist, x) == p.

If you're wondering why these aren't member functions, it's to make the library more easily extensible: if you want to add additional generic operations - let's say the n'th moment - then all you have to do is add the appropriate non-member functions, overloaded for each implemented distribution type.

Tip

Random numbers that approximate Quantiles of Distributions

If you want random numbers that are distributed in a specific way, for example in a uniform, normal or triangular, see Boost.Random.

Whilst in principal there's nothing to prevent you from using the quantile function to convert a uniformly distributed random number to another distribution, in practice there are much more efficient algorithms available that are specific to random number generation.

For example, the binomial distribution has two parameters: n (the number of trials) and p (the probability of success on one trial).

The binomial_distribution constructor therefore has two parameters:

binomial_distribution(RealType n, RealType p);

For this distribution the random variate is k: the number of successes observed. The probability density/mass function (pdf) is therefore written as \(f(k; n, p) \).

Note

Random Variates and Distribution Parameters

Random variates and distribution parameters are conventionally distinguished (for example in Wikipedia and Wolfram MathWorld by placing a semi-colon (or sometimes vertical bar) after the random variate (whose value you 'choose'), to separate the variate from the parameter(s) that defines the shape of the distribution.

As noted above the non-member function pdf has one parameter for the distribution object, and a second for the random variate. So taking our binomial distribution example, we would write:

pdf(binomial_distribution<RealType>(n, p), k);

The ranges of random variate values that are permitted and are supported can be tested by using two functions range and support.

The distribution (effectively the random variate) is said to be 'supported' over a range that is "the smallest closed set whose complement has probability zero". MathWorld uses the word 'defined' for this range. Non-mathematicians might say it means the 'interesting' smallest range of random variate x that has the cdf going from zero to unity. Outside are uninteresting zones where the pdf is zero, and the cdf zero or unity.

For most distributions, with probability distribution functions one might describe as 'well-behaved', we have decided that it is most useful for the supported range to exclude random variate values like exact zero if the end point is discontinuous. For example, the Weibull (scale 1, shape 1) distribution smoothly heads for unity as the random variate x declines towards zero. But at x = zero, the value of the pdf is suddenly exactly zero, by definition. If you are plotting the PDF, or otherwise calculating, zero is not the most...
useful value for the lower limit of supported, as we discovered. So for this, and similar distributions, we have decided it is most numerically useful to use the closest value to zero, min_value, for the limit of the supported range. (The range remains from zero, so you will still get pdf(weibull, 0) == 0). (Exponential and gamma distributions have similarly discontinuous functions).

Mathematically, the functions may make sense with an (+ or -) infinite value, but except for a few special cases (in the Normal and Cauchy distributions) this implementation limits random variates to finite values from the max to min for the RealType. (See Handling of Floating-Point Infinity for rationale).

Note

Discrete Probability Distributions

Note that the discrete distributions, including the binomial, negative binomial, Poisson & Bernoulli, are all mathematically defined as discrete functions: that is to say the functions cdf and pdf are only defined for integral values of the random variate.

However, because the method of calculation often uses continuous functions it is convenient to treat them as if they were continuous functions, and permit non-integral values of their parameters.

Users wanting to enforce a strict mathematical model may use floor or ceil functions on the random variate prior to calling the distribution function.

The quantile functions for these distributions are hard to specify in a manner that will satisfy everyone all of the time. The default behaviour is to return an integer result, that has been rounded outwards: that is to say, lower quantiles - where the probability is less than 0.5 are rounded down, while upper quantiles - where the probability is greater than 0.5 - are rounded up. This behaviour ensures that if an X% quantile is requested, then at least the requested coverage will be present in the central region, and no more than the requested coverage will be present in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or return a real-valued result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete Distributions before using the quantile function on a discrete distribution. The reference docs describe how to change the rounding policy for these distributions.

For similar reasons continuous distributions with parameters like "degrees of freedom" that might appear to be integral, are treated as real values (and are promoted from integer to floating-point if necessary). In this case however, there are a small number of situations where non-integral degrees of freedom do have a genuine meaning.

Complements are supported too - and when to use them

Often you don't want the value of the CDF, but its complement, which is to say 1-p rather than p. It is tempting to calculate the CDF and subtract it from 1, but if p is very close to 1 then cancellation error will cause you to lose accuracy, perhaps totally.

See below "Why and when to use complements?"

In this library, whenever you want to receive a complement, just wrap all the function arguments in a call to `complement(...)`, for example:

```cpp
students_t dist(5);
cout << "CDF at t = 1 is " << cdf(dist, 1.0) << endl;
cout << "Complement of CDF at t = 1 is " << cdf(complement(dist, 1.0)) << endl;
```

But wait, now that we have a complement, we have to be able to use it as well. Any function that accepts a probability as an argument can also accept a complement by wrapping all of its arguments in a call to `complement(...)`, for example:
students_t dist(5);

for(double i = 10; i < 1e10; i *= 10)
{
 // Calculate the quantile for a 1 in i chance:
 double t = quantile(complement(dist, 1/i));
 // Print it out:
 cout << "Quantile of students-t with 5 degrees of freedom\n";
 "for a 1 in " << i << " chance is " << t << endl;
}

Tip

Critical values are just quantiles

Some texts talk about quantiles, or percentiles, others about critical values, the basic rule is:

Lower critical values are the same as the quantile.

Upper critical values are the same as the quantile from the complement of the probability.

For example, suppose we have a Bernoulli process, giving rise to a binomial distribution with success ratio 0.1 and 100 trials in total. The *lower critical value* for a probability of 0.05 is given by:

\[
\text{quantile(binomial(100, 0.1), 0.05)}
\]

and the *upper critical value* is given by:

\[
\text{quantile(complement(binomial(100, 0.1), 0.05))}
\]

which return 4.82 and 14.63 respectively.
Tip

Why bother with complements anyway?

It's very tempting to dispense with complements, and simply subtract the probability from 1 when required. However, consider what happens when the probability is very close to 1: let's say the probability expressed at float precision is \(0.999999940f\), then \(1 - 0.999999940f = 5.96046448e-008\), but the result is actually accurate to just one single bit: the only bit that didn't cancel out!

Or to look at this another way: consider that we want the risk of falsely rejecting the null-hypothesis in the Student's t test to be 1 in 1 billion, for a sample size of 10,000. This gives a probability of \(1 - 10^{-9}\), which is exactly 1 when calculated at float precision. In this case calculating the quantile from the complement neatly solves the problem, so for example:

\[
\text{quantile}\left(\text{complement}\left(\text{students}_t(10000), 1e-9\right)\right)
\]

returns the expected t-statistic \(6.00336\), where as:

\[
\text{quantile}\left(\text{students}_t(10000), 1-1e-9f\right)
\]

raises an overflow error, since it is the same as:

\[
\text{quantile}\left(\text{students}_t(10000), 1\right)
\]

Which has no finite result.

With all distributions, even for more reasonable probability (unless the value of \(p\) can be represented exactly in the floating-point type) the loss of accuracy quickly becomes significant if you simply calculate probability from \(1 - p\) (because it will be mostly garbage digits for \(p \approx 1\)).

So always avoid, for example, using a probability near to unity like 0.99999

\[
\text{quantile}\left(\text{my_distribution}, 0.99999\right)
\]

and instead use

\[
\text{quantile}\left(\text{complement}\left(\text{my_distribution}, 0.00001\right)\right)
\]

since \(1 - 0.99999\) is not exactly equal to 0.00001 when using floating-point arithmetic.

This assumes that the 0.00001 value is either a constant, or can be computed by some manner other than subtracting 0.99999 from 1.

Parameters can be calculated

Sometimes it's the parameters that define the distribution that you need to find. Suppose, for example, you have conducted a Students-t test for equal means and the result is borderline. Maybe your two samples differ from each other, or maybe they don't; based on the result of the test you can't be sure. A legitimate question to ask then is "How many more measurements would I have to take before I would get an X% probability that the difference is real?" Parameter finders can answer questions like this, and are necessarily different for each distribution. They are implemented as static member functions of the distributions, for example:
students_t::find_degrees_of_freedom(
1.3, // difference from true mean to detect
0.05, // maximum risk of falsely rejecting the null-hypothesis.
0.1, // maximum risk of falsely failing to reject the null-hypothesis.
0.13); // sample standard deviation

Returns the number of degrees of freedom required to obtain a 95% probability that the observed differences in means is not down
to chance alone. In the case that a borderline Students-t test result was previously obtained, this can be used to estimate how large
the sample size would have to become before the observed difference was considered significant. It assumes, of course, that the
sample mean and standard deviation are invariant with sample size.

Summary

• Distributions are objects, which are constructed from whatever parameters the distribution may have.
• Member functions allow you to retrieve the parameters of a distribution.
• Generic non-member functions provide access to the properties that are common to all the distributions (PDF, CDF, quantile etc).
• Complements of probabilities are calculated by wrapping the function's arguments in a call to complement(...).
• Functions that accept a probability can accept a complement of the probability as well, by wrapping the function's arguments in
 a call to complement(...).
• Static member functions allow the parameters of a distribution to be found from other information.

Now that you have the basics, the next section looks at some worked examples.

Worked Examples

Distribution Construction Example

See distribution_construction.cpp for full source code.

The structure of distributions is rather different from some other statistical libraries, for example in less object-oriented language
like FORTRAN and C, that provide a few arguments to each free function. This library provides each distribution as a template C++
class. A distribution is constructed with a few arguments, and then member and non-member functions are used to find values of
the distribution, often a function of a random variate.

First we need some includes to access the negative binomial distribution (and the binomial, beta and gamma too).

```cpp
#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
using boost::math::negative_binomial_distribution; // default type is double.
using boost::math::negative_binomial; // typedef provides default type is double.
#include <boost/math/distributions/binomial.hpp> // for binomial_distribution.
#include <boost/math/distributions/beta.hpp> // for beta_distribution.
#include <boost/math/distributions/gamma.hpp> // for gamma_distribution.
#include <boost/math/distributions/normal.hpp> // for normal_distribution.
```

Several examples of constructing distributions follow:

First, a negative binomial distribution with 8 successes and a success fraction 0.25, 25% or 1 in 4, is constructed like this:

```cpp
boost::math::negative_binomial_distribution<double> mydist0(8., 0.25);
```

But this is inconveniently long, so by writing
using namespace boost::math;

or

using boost::math::negative_binomial_distribution;

we can reduce typing.

Since the vast majority of applications use will be using double precision, the template argument to the distribution (RealType) defaults to type double, so we can also write:

```
negative_binomial_distribution<> mydist9(8., 0.25); // Uses default RealType = double.
```

But the name "negative_binomial_distribution" is still inconveniently long, so for most distributions, a convenience typedef is provided, for example:

```
typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.
```

Caution

This convenience typedef is not provided if a clash would occur with the name of a function: currently only "beta" and "gamma" fall into this category.

So, after a using statement,

```
using boost::math::negative_binomial;
```

we have a convenient typedef to `negative_binomial_distribution<double>:

```
negative_binomial mydist(8., 0.25);
```

Some more examples using the convenience typedef:

```
negative_binomial mydist10(5., 0.4); // Both arguments double.
```

And automatic conversion takes place, so you can use integers and floats:

```
negative_binomial mydist11(5, 0.4); // Using provided typedef double, int and double arguments.
```

This is probably the most common usage.

```
negative_binomial mydist12(5., 0.4F); // Double and float arguments.
negative_binomial mydist13(5, 1); // Both arguments integer.
```

Similarly for most other distributions like the binomial.

```
binomial mybinomial(1, 0.5); // is more concise than
binomial_distribution<> mybinomial1(1, 0.5);
```
For cases when the typedef distribution name would clash with a math special function (currently only beta and gamma) the typedef is deliberately not provided, and the longer version of the name must be used. For example do not use:

```cpp
using boost::math::beta;
beta mybetad0(1, 0.5); // Error beta is a math FUNCTION!
```

Which produces the error messages:

```cpp
error C2146: syntax error : missing ';' before identifier 'mybetad0'
warning C4551: function call missing argument list
error C3861: 'mybetad0': identifier not found
```

Instead you should use:

```cpp
using boost::math::beta_distribution;
beta_distribution<> mybetad1(1, 0.5);
```

or for the gamma distribution:

```cpp
gamma_distribution<> mygammad1(1, 0.5);
```

We can, of course, still provide the type explicitly thus:

```cpp
// Explicit double precision:
negative_binomial_distribution<double>        mydist1(8., 0.25);

// Explicit float precision, double arguments are truncated to float:
negative_binomial_distribution<float>        mydist2(8., 0.25);

// Explicit float precision, integer & double arguments converted to float.
negative_binomial_distribution<float>        mydist3(8, 0.25);

// Explicit float precision, float arguments, so no conversion:
negative_binomial_distribution<float>        mydist4(8.F, 0.25F);

// Explicit float precision, integer arguments promoted to float.
negative_binomial_distribution<float>        mydist5(8, 1);

// Explicit double precision:
negative_binomial_distribution<double>        mydist6(8., 0.25);

// Explicit long double precision:
negative_binomial_distribution<long double>   mydist7(8., 0.25);
```

And if you have your own RealType called MyFPType, for example NTL RR (an arbitrary precision type), then we can write:

```cpp
negative_binomial_distribution<MyFPType>  mydist6(8, 1); // Integer arguments -> MyFPType.
```

Default arguments to distribution constructors.

Note that default constructor arguments are only provided for some distributions. So if you wrongly assume a default argument you will get an error message, for example:
negative_binomial_distribution<> mydist8;

error C2512 no appropriate default constructor available.

No default constructors are provided for the negative binomial, because it is difficult to choose any sensible default values for this distribution. For other distributions, like the normal distribution, it is obviously very useful to provide 'standard' defaults for the mean and standard deviation thus:

normal_distribution<RealType mean = 0, RealType sd = 1);

So in this case we can write:

```cpp
using boost::math::normal;

normal norm1; // Standard normal distribution.
normal norm2(2); // Mean = 2, std deviation = 1.
normal norm3(2, 3); // Mean = 2, std deviation = 3.

return 0;
```

There is no useful output from this program, of course.

Student's t Distribution Examples

Calculating confidence intervals on the mean with the Students-t distribution

Let's say you have a sample mean, you may wish to know what confidence intervals you can place on that mean. Colloquially: "I want an interval that I can be P% sure contains the true mean". (On a technical point, note that the interval either contains the true mean or it does not: the meaning of the confidence level is subtly different from this colloquialism. More background information can be found on the NIST site).

The formula for the interval can be expressed as:

\[Y_s \pm t_{\left(\frac{\alpha}{2}, N-1\right)} \frac{S}{\sqrt{N}} \]

Where, \(Y_s \) is the sample mean, \(s \) is the sample standard deviation, \(N \) is the sample size, \(\alpha \) is the desired significance level and \(t_{\left(\alpha/2, N-1\right)} \) is the upper critical value of the Students-t distribution with \(N-1 \) degrees of freedom.

Note

The quantity \(\alpha \) is the maximum acceptable risk of falsely rejecting the null-hypothesis. The smaller the value of \(\alpha \) the greater the strength of the test.

The confidence level of the test is defined as 1 - \(\alpha \), and often expressed as a percentage. So for example a significance level of 0.05, is equivalent to a 95% confidence level. Refer to "What are confidence intervals?" in NIST/SEMATECH e-Handbook of Statistical Methods. for more information.

Note

The usual assumptions of independent and identically distributed (i.i.d.) variables and normal distribution of course apply here, as they do in other examples.

From the formula, it should be clear that:
• The width of the confidence interval decreases as the sample size increases.

• The width increases as the standard deviation increases.

• The width increases as the confidence level increases (0.5 towards 0.99999 - stronger).

• The width increases as the significance level decreases (0.5 towards 0.00000...01 - stronger).

The following example code is taken from the example program students_t_single_sample.cpp.

We'll begin by defining a procedure to calculate intervals for various confidence levels; the procedure will print these out as a table:

```cpp
// Needed includes:
#include <boost/math/distributions/students_t.hpp>
#include <iostream>
#include <iomanip>

// Bring everything into global namespace for ease of use:
using namespace boost::math;
using namespace std;

void confidence_limits_on_mean(  
  double Sm, // Sm = Sample Mean.
  double Sd, // Sd = Sample Standard Deviation.
  unsigned Sn) // Sn = Sample Size.
{  
  // Print out general info:
  cout << "__________________________________\n";
  cout << "2-Sided Confidence Limits For Mean\n";
  cout << "__________________________________\n\n";
  cout << setprecision(7);
  cout << setw(40) << left << "Number of Observations" << "=  " << Sn << "\n";
  cout << setw(40) << left << "Mean" << "=  " << Sm << "\n";
  cout << setw(40) << left << "Standard Deviation" << "=  " << Sd << "\n";

  // Define a table of significance/risk levels for which we'll compute intervals:
  double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

  // We'll define a table of significance/risk levels for which we'll compute intervals:
  for (int i = 0; i < 8; i++)
  {  
    double T = quantile(complement(dist, alpha[i] / 2));
    cout << setprecision(7) << T << "\n";
  }
}
```

Note that these are the complements of the confidence/probability levels: 0.5, 0.75, 0.9 .. 0.99999).

Next we'll declare the distribution object we'll need, note that the degrees of freedom parameter is the sample size less one:

```cpp
students_t dist(Sn - 1);
```

Most of what follows in the program is pretty printing, so let's focus on the calculation of the interval. First we need the t-statistic, computed using the quantile function and our significance level. Note that since the significance levels are the complement of the probability, we have to wrap the arguments in a call to complement(...):

```cpp
double T = quantile(complement(dist, alpha[i] / 2));
```

Note that alpha was divided by two, since we'll be calculating both the upper and lower bounds: had we been interested in a single sided interval then we would have omitted this step.

Now to complete the picture, we'll get the (one-sided) width of the interval from the t-statistic by multiplying by the standard deviation, and dividing by the square root of the sample size:
The two-sided interval is then the sample mean plus and minus this width.

And apart from some more pretty-printing that completes the procedure.

Let's take a look at some sample output, first using the Heat flow data from the NIST site. The data set was collected by Bob Zarr of NIST in January, 1990 from a heat flow meter calibration and stability analysis. The corresponding dataplot output for this test can be found in section 3.5.2 of the NIST/SEMATECH e-Handbook of Statistical Methods.

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>T Value</th>
<th>Interval Width</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
<td>0.676</td>
<td>1.103e-003</td>
<td>9.26036</td>
<td>9.26256</td>
</tr>
<tr>
<td>75.000</td>
<td>1.154</td>
<td>1.883e-003</td>
<td>9.25958</td>
<td>9.26334</td>
</tr>
<tr>
<td>90.000</td>
<td>1.653</td>
<td>2.697e-003</td>
<td>9.25876</td>
<td>9.26416</td>
</tr>
<tr>
<td>95.000</td>
<td>1.972</td>
<td>3.219e-003</td>
<td>9.25824</td>
<td>9.26468</td>
</tr>
<tr>
<td>99.000</td>
<td>2.601</td>
<td>4.245e-003</td>
<td>9.25721</td>
<td>9.26571</td>
</tr>
</tbody>
</table>

As you can see the large sample size (195) and small standard deviation (0.023) have combined to give very small intervals, indeed we can be very confident that the true mean is 9.2.

This time the fact that there are only three measurements leads to much wider intervals, indeed such large intervals that it's hard to be very confident in the location of the mean.

Testing a sample mean for difference from a "true" mean

When calibrating or comparing a scientific instrument or measurement method of some kind, we want to be answer the question "Does an observed sample mean differ from the "true" mean in any significant way?". If it does, then we have evidence of a systematic difference. This question can be answered with a Students-t test: more information can be found on the NIST site.

Of course, the assignment of "true" to one mean may be quite arbitrary, often this is simply a "traditional" method of measurement.

The following example code is taken from the example program students_t_single_sample.cpp.

We'll begin by defining a procedure to determine which of the possible hypothesis are rejected or not-rejected at a given significance level:

Note

Non-statisticians might say 'not-rejected' means 'accepted', (often of the null-hypothesis) implying, wrongly, that there really IS no difference, but statisticians eschew this to avoid implying that there is positive evidence of 'no difference'. 'Not-rejected' here means there is no evidence of difference, but there still might well be a difference. For example, see argument from ignorance and Absence of evidence does not constitute evidence of absence.
// Needed includes:
#include <boost/math/distributions/students_t.hpp>
#include <iostream>
#include <iomanip>
// Bring everything into global namespace for ease of use:
using namespace boost::math;
using namespace std;

void single_sample_t_test(double M, double Sm, double Sd, unsigned Sn, double alpha) {
 //
 // M = true mean.
 // Sm = Sample Mean.
 // Sd = Sample Standard Deviation.
 // Sn = Sample Size.
 // alpha = Significance Level.

 Most of the procedure is pretty-printing, so let's just focus on the calculation, we begin by calculating the t-statistic:

 // Difference in means:
 double diff = Sm - M;
 // Degrees of freedom:
 unsigned v = Sn - 1;
 // t-statistic:
 double t_stat = diff * sqrt(double(Sn)) / Sd;

 Finally calculate the probability from the t-statistic. If we're interested in simply whether there is a difference (either less or greater) or not, we don't care about the sign of the t-statistic, and we take the complement of the probability for comparison to the significance level:

 students_t dist(v);
 double q = cdf(complement(dist, fabs(t_stat)));

 The procedure then prints out the results of the various tests that can be done, these can be summarised in the following table:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Test</th>
</tr>
</thead>
</table>
| The Null-hypothesis: there is no difference in means | Reject if complement of CDF for $|t| < \text{significance level} / 2$:
 |
| The Alternative-hypothesis: there is difference in means | Reject if complement of CDF for $|t| > \text{significance level} / 2$:
 |
| The Alternative-hypothesis: the sample mean is less than the true mean. | Reject if CDF of $t > \text{significance level}$:
 |
| The Alternative-hypothesis: the sample mean is greater than the true mean. | Reject if complement of CDF of $t > \text{significance level}$:
 |

Note

Notice that the comparisons are against $\alpha / 2$ for a two-sided test and against α for a one-sided test.
Now that we have all the parts in place, let's take a look at some sample output, first using the Heat flow data from the NIST site. The data set was collected by Bob Zarr of NIST in January, 1990 from a heat flow meter calibration and stability analysis. The corresponding dataplot output for this test can be found in section 3.5.2 of the NIST/SEMATECH e-Handbook of Statistical Methods.

You will note the line that says the probability that the difference is due to chance is zero. From a philosophical point of view, of course, the probability can never reach zero. However, in this case the calculated probability is smaller than the smallest representable double precision number, hence the appearance of a zero here. Whatever its "true" value is, we know it must be extraordinarily small, so the alternative hypothesis - that there is a difference in means - is not rejected.

As you can see the small number of measurements (3) has led to a large uncertainty in the location of the true mean. So even though there appears to be a difference between the sample mean and the expected true mean, we conclude that there is no significant difference, and are unable to reject the null hypothesis. However, if we were to lower the bar for acceptance down to alpha = 0.1 (a 90% confidence level) we see a different output:
Student t test for a single sample

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
<td>3</td>
</tr>
<tr>
<td>Sample Mean</td>
<td>37.80000</td>
</tr>
<tr>
<td>Sample Standard Deviation</td>
<td>0.96437</td>
</tr>
<tr>
<td>Expected True Mean</td>
<td>38.90000</td>
</tr>
<tr>
<td>Sample Mean - Expected Test Mean</td>
<td>-1.10000</td>
</tr>
<tr>
<td>Degrees of Freedom</td>
<td>2</td>
</tr>
<tr>
<td>T Statistic</td>
<td>-1.97566</td>
</tr>
<tr>
<td>Probability that difference is due to chance</td>
<td>1.869e-001</td>
</tr>
</tbody>
</table>

Results for Alternative Hypothesis and alpha = 0.1000

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean != 38.900</td>
<td>REJECTED</td>
</tr>
<tr>
<td>Mean < 38.900</td>
<td>NOT REJECTED</td>
</tr>
<tr>
<td>Mean > 38.900</td>
<td>REJECTED</td>
</tr>
</tbody>
</table>

In this case, we really have a borderline result, and more data (and/or more accurate data), is needed for a more convincing conclusion.

Estimating how large a sample size would have to become in order to give a significant Students-t test result with a single sample test

Imagine you have conducted a Students-t test on a single sample in order to check for systematic errors in your measurements. Imagine that the result is borderline. At this point one might go off and collect more data, but it might be prudent to first ask the question "How much more?". The parameter estimators of the students_t_distribution class can provide this information.

This section is based on the example code in `students_t_single_sample.cpp` and we begin by defining a procedure that will print out a table of estimated sample sizes for various confidence levels:

```cpp
#include <boost/math/distributions/students_t.hpp>
#include <iostream>
#include <iomanip>
using namespace boost::math;
using namespace std;

void single_sample_find_df(
    double M, // M = true mean.
    double Sm, // Sm = Sample Mean.
    double Sd) // Sd = Sample Standard Deviation.
{
}
```

Next we define a table of significance levels:

```cpp
double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
```

Printing out the table of sample sizes required for various confidence levels begins with the table header:
And now the important part: the sample sizes required. Class `students_t_distribution` has a static member function `find_degrees_of_freedom` that will calculate how large a sample size needs to be in order to give a definitive result.

The first argument is the difference between the means that you wish to be able to detect, here it's the absolute value of the difference between the sample mean, and the true mean.

Then come two probability values: alpha and beta. Alpha is the maximum acceptable risk of rejecting the null-hypothesis when it is in fact true. Beta is the maximum acceptable risk of failing to reject the null-hypothesis when in fact it is false. Also note that for a two-sided test, alpha must be divided by 2.

The final parameter of the function is the standard deviation of the sample.

In this example, we assume that alpha and beta are the same, and call `find_degrees_of_freedom` twice: once with alpha for a one-sided test, and once with alpha/2 for a two-sided test.

```cpp
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{
    // Confidence value:
    cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
    // calculate df for single sided test:
    double df = students_t::find_degrees_of_freedom(
        fabs(M - Sm), alpha[i], alpha[i], Sd);
    // convert to sample size:
    double size = ceil(df) + 1;
    // Print size:
    cout << fixed << setprecision(0) << setw(16) << right << size;
    // calculate df for two sided test:
    df = students_t::find_degrees_of_freedom(
        fabs(M - Sm), alpha[i]/2, alpha[i], Sd);
    // convert to sample size:
    size = ceil(df) + 1;
    // Print size:
    cout << fixed << setprecision(0) << setw(16) << right << size << endl;
}
```


Only three measurements were made, and the Students-t test above gave a borderline result, so this example will show us how many samples would need to be collected:
Estimated sample sizes required for various confidence levels

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>Estimated Sample Size (one sided test)</th>
<th>Estimated Sample Size (two sided test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.000</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>90.000</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>95.000</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>99.000</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>99.900</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td>99.990</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>99.999</td>
<td>66</td>
<td>68</td>
</tr>
</tbody>
</table>

So in this case, many more measurements would have had to be made, for example at the 95% level, 14 measurements in total for a two-sided test.

Comparing the means of two samples with the Students-t test

Imagine that we have two samples, and we wish to determine whether their means are different or not. This situation often arises when determining whether a new process or treatment is better than an old one.

In this example, we’ll be using the Car Mileage sample data from the NIST website. The data compares miles per gallon of US cars with miles per gallon of Japanese cars.

The sample code is in `students_t_two_samples.cpp`.

There are two ways in which this test can be conducted: we can assume that the true standard deviations of the two samples are equal or not. If the standard deviations are assumed to be equal, then the calculation of the t-statistic is greatly simplified, so we’ll examine that case first. In real life we should verify whether this assumption is valid with a Chi-Squared test for equal variances.

We begin by defining a procedure that will conduct our test assuming equal variances:

```cpp
// Needed headers:
#include <boost/math/distributions/students_t.hpp>
#include <iostream>
#include <iomanip>
// Simplify usage:
using namespace boost::math;
using namespace std;

void two_samples_t_test_equal_sd(
    double Sm1, // Sm1 = Sample 1 Mean.
    double Sd1, // Sd1 = Sample 1 Standard Deviation.
    unsigned Sn1, // Sn1 = Sample 1 Size.
    double Sm2, // Sm2 = Sample 2 Mean.
    double Sd2, // Sd2 = Sample 2 Standard Deviation.
    unsigned Sn2, // Sn2 = Sample 2 Size.
    double alpha) // alpha = Significance Level.
{
}
```

Our procedure will begin by calculating the t-statistic, assuming equal variances the needed formulae are:
\[t = \frac{S_{m1} - S_{m2}}{s_p \sqrt{\frac{1}{S_{n1}} + \frac{1}{S_{n2}}}} \]

\[s_p = \sqrt{\frac{(S_{n1} - 1)S_{d1}^2 + (S_{n2} - 1)S_{d2}^2}{S_{n1} + S_{n2} - 2}} \]

\[\nu = S_{n1} + S_{n2} - 2 \]

where \(s_p \) is the "pooled" standard deviation of the two samples, and \(\nu \) is the number of degrees of freedom of the two combined samples. We can now write the code to calculate the t-statistic:

```cpp
// Degrees of freedom:
double v = Sn1 + Sn2 - 2;

// Pooled variance:
double sp = sqrt(((Sn1-1) * Sd1 * Sd1 + (Sn2-1) * Sd2 * Sd2) / v);

// t-statistic:
double t_stat = (Sm1 - Sm2) / (sp * sqrt(1.0 / Sn1 + 1.0 / Sn2));
```

The next step is to define our distribution object, and calculate the complement of the probability:

```cpp
students_t dist(v);

double q = cdf(complement(dist, fabs(t_stat)));
```

Here we've used the absolute value of the t-statistic, because we initially want to know simply whether there is a difference or not (a two-sided test). However, we can also test whether the mean of the second sample is greater or is less (one-sided test) than that of the first: all the possible tests are summed up in the following table:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Null-hypothesis: there is no difference in means</td>
<td>Reject if complement of CDF for</td>
</tr>
<tr>
<td>The Alternative-hypothesis: there is a difference in means</td>
<td>Reject if complement of CDF for</td>
</tr>
<tr>
<td>The Alternative-hypothesis: Sample 1 Mean is less than Sample 2 Mean.</td>
<td>Reject if CDF of</td>
</tr>
<tr>
<td>The Alternative-hypothesis: Sample 1 Mean is greater than Sample 2 Mean.</td>
<td>Reject if complement of CDF of</td>
</tr>
</tbody>
</table>

Note

For a two-sided test we must compare against alpha / 2 and not alpha.

Most of the rest of the sample program is pretty-printing, so we'll skip over that, and take a look at the sample output for alpha=0.05 (a 95% probability level). For comparison the dataplot output for the same data is in section 1.3.5.3 of the NIST/SEMATECH e-Handbook of Statistical Methods.
Student t test for two samples (equal variances)

Number of Observations (Sample 1) = 249
Sample 1 Mean = 20.14458
Sample 1 Standard Deviation = 6.41470
Number of Observations (Sample 2) = 79
Sample 2 Mean = 30.48101
Sample 2 Standard Deviation = 6.10771
Degrees of Freedom = 326.00000
Pooled Standard Deviation = 326.00000
T Statistic = -12.62059
Probability that difference is due to chance = 5.273e-030

Results for Alternative Hypothesis and alpha = 0.0500

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1 Mean != Sample 2 Mean</td>
<td>NOT REJECTED</td>
</tr>
<tr>
<td>Sample 1 Mean < Sample 2 Mean</td>
<td>NOT REJECTED</td>
</tr>
<tr>
<td>Sample 1 Mean > Sample 2 Mean</td>
<td>REJECTED</td>
</tr>
</tbody>
</table>

So with a probability that the difference is due to chance of just 5.273e-030, we can safely conclude that there is indeed a difference.

The tests on the alternative hypothesis show that we must also reject the hypothesis that Sample 1 Mean is greater than that for Sample 2: in this case Sample 1 represents the miles per gallon for Japanese cars, and Sample 2 the miles per gallon for US cars, so we conclude that Japanese cars are on average more fuel efficient.

Now that we have the simple case out of the way, let’s look for a moment at the more complex one: that the standard deviations of the two samples are not equal. In this case the formula for the t-statistic becomes:

\[
t = \frac{S_m_1 - S_m_2}{\sqrt{\frac{S_d_1^2}{S_n_1} + \frac{S_d_2^2}{S_n_2}}}
\]

And for the combined degrees of freedom we use the Welch-Satterthwaite approximation:

\[
\nu = \frac{\left(\frac{S_d_1^2}{S_n_1} + \frac{S_d_2^2}{S_n_2}\right)^2}{\left(\frac{S_d_1^2}{S_n_1}\right)^2 \left(\frac{S_n_1 - 1}{S_n_1}\right) + \left(\frac{S_d_2^2}{S_n_2}\right)^2 \left(\frac{S_n_2 - 1}{S_n_2}\right)}
\]

Note that this is one of the rare situations where the degrees-of-freedom parameter to the Student’s t distribution is a real number, and not an integer value.

Note

Some statistical packages truncate the effective degrees of freedom to an integer value: this may be necessary if you are relying on lookup tables, but since our code fully supports non-integer degrees of freedom there is no need to truncate in this case. Also note that when the degrees of freedom is small then the Welch-Satterthwaite approximation may be a significant source of error.

Putting these formulae into code we get:
// Degrees of freedom:
 double v = Sd1 * Sd1 / Sn1 + Sd2 * Sd2 / Sn2;
 v *= v;
 double t1 = Sd1 * Sd1 / Sn1;
 t1 *= t1;
 t1 /= (Sn1 - 1);
 double t2 = Sd2 * Sd2 / Sn2;
 t2 *= t2;
 t2 /= (Sn2 - 1);
 v /= (t1 + t2);
 cout << setw(55) << left << "Degrees of Freedom" << " = " << v << "\n";

// t-statistic:
 double t_stat = (Sm1 - Sm2) / sqrt(Sd1 * Sd1 / Sn1 + Sd2 * Sd2 / Sn2);
 cout << setw(55) << left << "T Statistic" << " = " << t_stat << "\n";

Thereafter the code and the tests are performed the same as before. Using are car mileage data again, here's what the output looks like:

<table>
<thead>
<tr>
<th>Student t test for two samples (unequal variances)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations (Sample 1)</td>
</tr>
<tr>
<td>Sample 1 Mean</td>
</tr>
<tr>
<td>Sample 1 Standard Deviation</td>
</tr>
<tr>
<td>Number of Observations (Sample 2)</td>
</tr>
<tr>
<td>Sample 2 Mean</td>
</tr>
<tr>
<td>Sample 2 Standard Deviation</td>
</tr>
<tr>
<td>Degrees of Freedom</td>
</tr>
<tr>
<td>T Statistic</td>
</tr>
<tr>
<td>Probability that difference is due to chance</td>
</tr>
<tr>
<td>Results for Alternative Hypothesis and alpha</td>
</tr>
<tr>
<td>Alternative Hypothesis</td>
</tr>
<tr>
<td>Sample 1 Mean != Sample 2 Mean</td>
</tr>
<tr>
<td>Sample 1 Mean < Sample 2 Mean</td>
</tr>
<tr>
<td>Sample 1 Mean > Sample 2 Mean</td>
</tr>
</tbody>
</table>

This time allowing the variances in the two samples to differ has yielded a higher likelihood that the observed difference is down to chance alone (1.571e-025 compared to 5.273e-030 when equal variances were assumed). However, the conclusion remains the same: US cars are less fuel efficient than Japanese models.

Comparing two paired samples with the Student's t distribution

Imagine that we have a before and after reading for each item in the sample: for example we might have measured blood pressure before and after administration of a new drug. We can’t pool the results and compare the means before and after the change, because each patient will have a different baseline reading. Instead we calculate the difference between before and after measurements in each patient, and calculate the mean and standard deviation of the differences. To test whether a significant change has taken place, we can then test the null-hypothesis that the true mean is zero using the same procedure we used in the single sample cases previously discussed.

That means we can:

- **Calculate confidence intervals of the mean.** If the endpoints of the interval differ in sign then we are unable to reject the null-hypothesis that there is no change.
- **Test whether the true mean is zero.** If the result is consistent with a true mean of zero, then we are unable to reject the null-hypothesis that there is no change.
- **Calculate how many pairs of readings we would need in order to obtain a significant result.**
Chi Squared Distribution Examples

Confidence Intervals on the Standard Deviation

Once you have calculated the standard deviation for your data, a legitimate question to ask is "How reliable is the calculated standard deviation?". For this situation the Chi Squared distribution can be used to calculate confidence intervals for the standard deviation.

The full example code & sample output is in chi_square_std_deviation_test.cpp.

We'll begin by defining the procedure that will calculate and print out the confidence intervals:

```c++
void confidence_limits_on_std_deviation(
    double Sd, // Sample Standard Deviation
    unsigned N) // Sample size
{

    cout << "2-Sided Confidence Limits For Standard Deviation\n";
    cout << setw(40) << left << "Number of Observations" << "=  " << N << "\n";
    cout << setw(40) << left << "Standard Deviation" << "=  " << Sd << "\n";

    double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

    chi_squared dist(N - 1);

    for each value of alpha, the formula for the confidence interval is given by:

\[
\sqrt{\frac{(N-1)s^2}{\chi^2(\frac{\alpha}{2}, N-1)}} \leq \sigma \leq \sqrt{\frac{(N-1)s^2}{\chi^2(1-\frac{\alpha}{2}, N-1)}}
\]

Where \( \chi^2(\frac{\alpha}{2}, N-1) \) is the upper critical value, and \( \chi^2(1-\frac{\alpha}{2}, N-1) \) is the lower critical value of the Chi Squared distribution.

In code we begin by printing out a table header:

```c++
cout << "\n\n";
 cout << "Confidence Value (%) Lower Limit Upper Limit\n";
 cout << "\n";
```


```
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{
 // Confidence value:
 cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
 // Calculate limits:
 double lower_limit = sqrt((N - 1) * Sd * Sd / quantile(complement(dist, alpha[i] / 2)));
 double upper_limit = sqrt((N - 1) * Sd * Sd / quantile(dist, alpha[i] / 2));
 // Print Limits:
 cout << fixed << setprecision(5) << setw(15) << right << lower_limit;
 cout << fixed << setprecision(5) << setw(15) << right << upper_limit << endl;
}
cout << endl;
```

To see some example output we'll use the gear data from the NIST/SEMATECH e-Handbook of Statistical Methods. The data represents measurements of gear diameter from a manufacturing process.

<table>
<thead>
<tr>
<th>2-Sided Confidence Limits For Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations                  =  100</td>
</tr>
<tr>
<td>Standard Deviation                      =  0.006278908</td>
</tr>
<tr>
<td>Confidence Value (%)     Lower   Upper</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>50.000</td>
</tr>
<tr>
<td>75.000</td>
</tr>
<tr>
<td>90.000</td>
</tr>
<tr>
<td>95.000</td>
</tr>
<tr>
<td>99.000</td>
</tr>
<tr>
<td>99.900</td>
</tr>
<tr>
<td>99.990</td>
</tr>
<tr>
<td>99.999</td>
</tr>
</tbody>
</table>

So at the 95% confidence level we conclude that the standard deviation is between 0.00551 and 0.00729.

**Confidence intervals as a function of the number of observations**

Similarly, we can also list the confidence intervals for the standard deviation for the common confidence levels 95%, for increasing numbers of observations.

The standard deviation used to compute these values is unity, so the limits listed are **multipliers** for any particular standard deviation. For example, given a standard deviation of 0.0062789 as in the example above; for 100 observations the multiplier is 0.8780 giving the lower confidence limit of $0.8780 \times 0.006728 = 0.00551$. 
With just 2 observations the limits are from 0.445 up to to 31.9, so the standard deviation might be about half the observed value up to 30 times the observed value!

Estimating a standard deviation with just a handful of values leaves a very great uncertainty, especially the upper limit. Note especially how far the upper limit is skewed from the most likely standard deviation.

Even for 10 observations, normally considered a reasonable number, the range is still from 0.69 to 1.8, about a range of 0.7 to 2, and is still highly skewed with an upper limit twice the median.

When we have 1000 observations, the estimate of the standard deviation is starting to look convincing, with a range from 0.95 to 1.05 - now near symmetrical, but still about + or - 5%.

Only when we have 10000 or more repeated observations can we start to be reasonably confident (provided we are sure that other factors like drift are not creeping in).

For 10000 observations, the interval is 0.99 to 1.1 - finally a really convincing + or -1% confidence.

**Chi-Square Test for the Standard Deviation**

We use this test to determine whether the standard deviation of a sample differs from a specified value. Typically this occurs in process change situations where we wish to compare the standard deviation of a new process to an established one.

The code for this example is contained in chi_square_std_dev_test.cpp, and we'll begin by defining the procedure that will print out the test statistics:
void chi_squared_test(
    double Sd,       // Sample std deviation
    double D,        // True std deviation
    unsigned N,      // Sample size
    double alpha)    // Significance level
{

    // Print header:
    using namespace std;
    using namespace boost::math;
    cout << "______________________________________________\n"
    << "Chi Squared test for sample standard deviation\n"
    << "______________________________________________\n\n";
    cout << setprecision(5);
    cout << setw(55) << left << "Number of Observations" << "=  " << N << "\n";
    cout << setw(55) << left << "Sample Standard Deviation" << "=  " << Sd << "\n";
    cout << setw(55) << left << "Expected True Standard Deviation" << "=  " << D << "\n";

    double t_stat = (N - 1) * (Sd / D) * (Sd / D);
    cout << setw(55) << left << "Test Statistic" << "=  " << t_stat << "\n";

    // The distribution we need to use, is a Chi Squared distribution with N-1 degrees of freedom:
    chi_squared dist(N - 1);

    The various hypothesis that can be tested are summarised in the following table:

    | Hypothesis                                      | Test                                      |
    |------------------------------------------------|-------------------------------------------|
    | The null-hypothesis: there is no difference in standard deviation from the specified value | Reject if $T < \chi^2_{(1-alpha/2, N-1)}$ or $T > \chi^2_{(alpha/2, N-1)}$ |
    | The alternative hypothesis: there is a difference in standard deviation from the specified value | Reject if $\chi^2_{(1-alpha, N-1)} >= T >= \chi^2_{(alpha/2, N-1)}$ |
    | The alternative hypothesis: the standard deviation is less than the specified value | Reject if $\chi^2_{(1-alpha, N-1)} <= T$ |
    | The alternative hypothesis: the standard deviation is greater than the specified value | Reject if $\chi^2_{(alpha, N-1)} >= T$ |

    Where $\chi^2_{(alpha, N-1)}$ is the upper critical value of the Chi Squared distribution, and $\chi^2_{(1-alpha, N-1)}$ is the lower critical value.

    Recall that the lower critical value is the same as the quantile, and the upper critical value is the same as the quantile from the complement of the probability, that gives us the following code to calculate the critical values:
double ucv = quantile(complement(dist, alpha));
double ucv2 = quantile(complement(dist, alpha / 2));
double lcv = quantile(dist, alpha);
double lcv2 = quantile(dist, alpha / 2);
cout << setw(55) << left << "Upper Critical Value at alpha: " << "=  
   << setprecision(3) << scientific << ucv << \n";
cout << setw(55) << left << "Upper Critical Value at alpha/2: " << "=  
   << setprecision(3) << scientific << ucv2 << \n";
cout << setw(55) << left << "Lower Critical Value at alpha: " << "=  
   << setprecision(3) << scientific << lcv << \n";
cout << setw(55) << left << "Lower Critical Value at alpha/2: " << "=  
   << setprecision(3) << scientific << lcv2 << \n\n";

Now that we have the critical values, we can compare these to our test statistic, and print out the result of each hypothesis and test:

cout << setw(55) << left <<  
   "Results for Alternative Hypothesis and alpha" << "=  
   << setprecision(4) << fixed << alpha << \n\n";
cout << "Alternative Hypothesis" << "Conclusion\n";
cout << "Standard Deviation != " << setprecision(3) << fixed << D << " ";
if((ucv2 < t_stat) || (lcv2 > t_stat))
cout << "ACCEPTED\n";
else
   cout << "REJECTED\n";

cout << "Standard Deviation < " << setprecision(3) << fixed << D << " ";
if(lcv > t_stat)
cout << "ACCEPTED\n";
else
   cout << "REJECTED\n";

cout << "Standard Deviation > " << setprecision(3) << fixed << D << " ";
if(ucv < t_stat)
cout << "ACCEPTED\n";
else
   cout << "REJECTED\n";
cout << endl << endl;

To see some example output we'll use the gear data from the NIST/SEMATECH e-Handbook of Statistical Methods. The data represents measurements of gear diameter from a manufacturing process. The program output is deliberately designed to mirror the DATAPLOT output shown in the NIST Handbook Example.
Chi Squared test for sample standard deviation

<table>
<thead>
<tr>
<th>Number of Observations</th>
<th>= 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Standard Deviation</td>
<td>= 0.00628</td>
</tr>
<tr>
<td>Expected True Standard Deviation</td>
<td>= 0.10000</td>
</tr>
<tr>
<td>Test Statistic</td>
<td>= 0.39030</td>
</tr>
<tr>
<td>CDF of test statistic:</td>
<td>= 1.438e-099</td>
</tr>
<tr>
<td>Upper Critical Value at alpha:</td>
<td>= 1.232e+002</td>
</tr>
<tr>
<td>Upper Critical Value at alpha/2:</td>
<td>= 1.284e+002</td>
</tr>
<tr>
<td>Lower Critical Value at alpha:</td>
<td>= 7.705e+001</td>
</tr>
<tr>
<td>Lower Critical Value at alpha/2:</td>
<td>= 7.336e+001</td>
</tr>
</tbody>
</table>

Results for Alternative Hypothesis and alpha = 0.0500

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation != 0.100</td>
<td>ACCEPTED</td>
</tr>
<tr>
<td>Standard Deviation &lt; 0.100</td>
<td>ACCEPTED</td>
</tr>
<tr>
<td>Standard Deviation &gt; 0.100</td>
<td>REJECTED</td>
</tr>
</tbody>
</table>

In this case we are testing whether the sample standard deviation is 0.1, and the null-hypothesis is rejected, so we conclude that the standard deviation is not 0.1.

For an alternative example, consider the silicon wafer data again from the NIST/SEMATECH e-Handbook of Statistical Methods. In this scenario a supplier of 100 ohm.cm silicon wafers claims that his fabrication process can produce wafers with sufficient consistency so that the standard deviation of resistivity for the lot does not exceed 10 ohm.cm. A sample of N = 10 wafers taken from the lot has a standard deviation of 13.97 ohm.cm, and the question we ask ourselves is "Is the suppliers claim correct?".

The program output now looks like this:

Chi Squared test for sample standard deviation

<table>
<thead>
<tr>
<th>Number of Observations</th>
<th>= 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Standard Deviation</td>
<td>= 13.97000</td>
</tr>
<tr>
<td>Expected True Standard Deviation</td>
<td>= 10.00000</td>
</tr>
<tr>
<td>Test Statistic</td>
<td>= 17.56448</td>
</tr>
<tr>
<td>CDF of test statistic:</td>
<td>= 9.594e-001</td>
</tr>
<tr>
<td>Upper Critical Value at alpha:</td>
<td>= 1.692e+001</td>
</tr>
<tr>
<td>Upper Critical Value at alpha/2:</td>
<td>= 1.902e+001</td>
</tr>
<tr>
<td>Lower Critical Value at alpha:</td>
<td>= 3.325e+000</td>
</tr>
<tr>
<td>Lower Critical Value at alpha/2:</td>
<td>= 2.700e+000</td>
</tr>
</tbody>
</table>

Results for Alternative Hypothesis and alpha = 0.0500

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation != 10.000</td>
<td>REJECTED</td>
</tr>
<tr>
<td>Standard Deviation &lt; 10.000</td>
<td>REJECTED</td>
</tr>
<tr>
<td>Standard Deviation &gt; 10.000</td>
<td>ACCEPTED</td>
</tr>
</tbody>
</table>

In this case, our null-hypothesis is that the standard deviation of the sample is less than 10: this hypothesis is rejected in the analysis above, and so we reject the manufacturers claim.

**Estimating the Required Sample Sizes for a Chi-Square Test for the Standard Deviation**

Suppose we conduct a Chi Squared test for standard deviation and the result is borderline, a legitimate question to ask is "How large would the sample size have to be in order to produce a definitive result?"
The class template `chi_squared_distribution` has a static method `find_degrees_of_freedom` that will calculate this value for some acceptable risk of type I failure `alpha`, type II failure `beta`, and difference from the standard deviation `diff`. Please note that the method used works on variance, and not standard deviation as is usual for the Chi Squared Test.

The code for this example is located in `chi_square_std_dev_test.cpp`.

We begin by defining a procedure to print out the sample sizes required for various risk levels:

```c++
void chi_squared_sample_sized(
 double diff, // difference from variance to detect
 double variance) // true variance
{
```

The procedure begins by printing out the input data:

```c++
using namespace std;
using namespace boost::math;

// Print out general info:
cout <<
 "\n"
 "Estimated sample sizes required for various confidence levels\n"
 "\n\n";
cout << setprecision(5);
cout << setw(40) << left << "True Variance" << "= " << variance << "\n";
cout << setw(40) << left << "Difference to detect" << "= " << diff << "\n";
```

And defines a table of significance levels for which we’ll calculate sample sizes:

```c++
double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
```

For each value of `alpha` we can calculate two sample sizes: one where the sample variance is less than the true value by `diff` and one where it is greater than the true value by `diff`. Thanks to the asymmetric nature of the Chi Squared distribution these two values will not be the same, the difference in their calculation differs only in the sign of `diff` that's passed to `find_degrees_of_freedom`. Finally in this example we’ll simply things, and let risk level `beta` be the same as `alpha`:
\begin{verbatim}
cout << "\n\n"  =  "Confidence       Estimated          Estimated\n"  * Value (%)      Sample Size        Sample Size\n"  * (lower one         (upper one\n"  * sided test)        sided test)\n"  * \n";

// Now print out the data for the table rows.
//
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{
    // Confidence value:
    cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
    // calculate df for a lower single sided test:
    double df = chi_squared::find_degrees_of_freedom(-diff, alpha[i], alpha[i], variance);
    // convert to sample size:
    double size = ceil(df) + 1;
    // Print size:
    cout << fixed << setprecision(0) << setw(16) << right << size;
    // calculate df for an upper single sided test:
    df = chi_squared::find_degrees_of_freedom(diff, alpha[i], alpha[i], variance);
    // convert to sample size:
    size = ceil(df) + 1;
    // Print size:
    cout << fixed << setprecision(0) << setw(16) << right << size << endl;
}
cout << endl;
\end{verbatim}

For some example output, consider the silicon wafer data from the NIST/SEMATECH e-Handbook of Statistical Methods. In this scenario a supplier of 100 ohm.cm silicon wafers claims that his fabrication process can produce wafers with sufficient consistency so that the standard deviation of resistivity for the lot does not exceed 10 ohm.cm. A sample of \( N = 10 \) wafers taken from the lot has a standard deviation of 13.97 ohm.cm, and the question we ask ourselves is "How large would our sample have to be to reliably detect this difference?".

To use our procedure above, we have to convert the standard deviations to variance (square them), after which the program output looks like this:
Estimated sample sizes required for various confidence levels

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>Estimated Sample Size (lower one sided test)</th>
<th>Estimated Sample Size (upper one sided test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>75.000</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>90.000</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>95.000</td>
<td>5</td>
<td>51</td>
</tr>
<tr>
<td>99.000</td>
<td>7</td>
<td>99</td>
</tr>
<tr>
<td>99.900</td>
<td>11</td>
<td>174</td>
</tr>
<tr>
<td>99.990</td>
<td>15</td>
<td>251</td>
</tr>
<tr>
<td>99.999</td>
<td>20</td>
<td>330</td>
</tr>
</tbody>
</table>

In this case we are interested in an upper single sided test. So for example, if the maximum acceptable risk of falsely rejecting the null-hypothesis is 0.05 (Type I error), and the maximum acceptable risk of failing to reject the null-hypothesis is also 0.05 (Type II error), we estimate that we would need a sample size of 51.

**F Distribution Examples**

Imagine that you want to compare the standard deviations of two samples to determine if they differ in any significant way, in this situation you use the F distribution and perform an F-test. This situation commonly occurs when conducting a process change comparison: "is a new process more consistent than the old one?".

In this example we'll be using the data for ceramic strength from [http://www.itl.nist.gov/div898/handbook/eda/section4/eda42a1.htm](http://www.itl.nist.gov/div898/handbook/eda/section4/eda42a1.htm). The data for this case study were collected by Said Jahanmir of the NIST Ceramics Division in 1996 in connection with a NIST/industry ceramics consortium for strength optimization of ceramic strength.

The example program is `f_test.cpp`, program output has been deliberately made as similar as possible to the DATAPLOT output in the corresponding NIST EngineeringStatistics Handbook example.

We'll begin by defining the procedure to conduct the test:

```c++
void f_test(
 double sd1, // Sample 1 std deviation
 double sd2, // Sample 2 std deviation
 double N1, // Sample 1 size
 double N2, // Sample 2 size
 double alpha) // Significance level
{
```

The procedure begins by printing out a summary of our input data:
using namespace std;
using namespace boost::math;

// Print header:
cout << "____________________________________
    \"test for equal standard deviations\n    ____________________________________\n\n";
cout << setprecision(5);
cout << "Sample 1:\n";
cout << setw(55) << left << "Number of Observations" << "=  " << N1 << "\n";
cout << setw(55) << left << "Sample Standard Deviation" << "=  " << sd1 << "\n";
cout << "Sample 2:\n";
cout << setw(55) << left << "Number of Observations" << "=  " << N2 << "\n";
cout << setw(55) << left << "Sample Standard Deviation" << "=  " << sd2 << "\n";

The test statistic for an F-test is simply the ratio of the square of the two standard deviations:

\[ F = \frac{s_1^2}{s_2^2} \]

where \( s_1 \) is the standard deviation of the first sample and \( s_2 \) is the standard deviation of the second sample. Or in code:

```cpp
double F = (sd1 / sd2);
F *= F;
```

At this point a word of caution: the F distribution is asymmetric, so we have to be careful how we compute the tests, the following table summarises the options available:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>The null-hypothesis: there is no difference in standard deviations (two sided test)</td>
<td>Reject if ( F \leq F_{(1-\alpha/2; N1-1, N2-1)} ) or ( F \geq F_{\alpha/2; N1-1, N2-1} )</td>
</tr>
<tr>
<td>The alternative hypothesis: there is a difference in means (two sided test)</td>
<td>Reject if ( F_{(1-\alpha/2; N1-1, N2-1)} \leq F \leq F_{\alpha/2; N1-1, N2-1} )</td>
</tr>
<tr>
<td>The alternative hypothesis: Standard deviation of sample 1 is greater than that of sample 2</td>
<td>Reject if ( F &lt; F_{\alpha; N1-1, N2-1} )</td>
</tr>
<tr>
<td>The alternative hypothesis: Standard deviation of sample 1 is less than that of sample 2</td>
<td>Reject if ( F &gt; F_{1-\alpha; N1-1, N2-1} )</td>
</tr>
</tbody>
</table>

Where \( F_{(1-\alpha; N1-1, N2-1)} \) is the lower critical value of the F distribution with degrees of freedom \( N1-1 \) and \( N2-1 \), and \( F_{(\alpha; N1-1, N2-1)} \) is the upper critical value of the F distribution with degrees of freedom \( N1-1 \) and \( N2-1 \).

The upper and lower critical values can be computed using the quantile function:

\[ F_{(1-\alpha; N1-1, N2-1)} = \text{quantile}(\text{fisher}_f(N1-1, N2-1), \alpha) \]

\[ F_{(\alpha; N1-1, N2-1)} = \text{quantile}(\text{complement}(\text{fisher}_f(N1-1, N2-1), \alpha)) \]

In our example program we need both upper and lower critical values for alpha and for alpha/2.
The final step is to perform the comparisons given above, and print out whether the hypothesis is rejected or not:

```c++
double ucv = quantile(complement(dist, alpha));
double ucv2 = quantile(complement(dist, alpha / 2));
double lcv = quantile(dist, alpha);
double lcv2 = quantile(dist, alpha / 2);

cout << setw(55) << left << "Upper Critical Value at alpha: " << "= "
 << setprecision(3) << scientific << ucv << "n";
cout << setw(55) << left << "Upper Critical Value at alpha/2: " << "= "
 << setprecision(3) << scientific << ucv2 << "n";
cout << setw(55) << left << "Lower Critical Value at alpha: " << "= "
 << setprecision(3) << scientific << lcv << "n";
cout << setw(55) << left << "Lower Critical Value at alpha/2: " << "= "
 << setprecision(3) << scientific << lcv2 << "n";

The final step is to perform the comparisons given above, and print out whether the hypothesis is rejected or not:

```c++

cout << setw(55) << left <<
    "Results for Alternative Hypothesis and alpha" << "=  "
    << setprecision(4) << fixed << alpha << "n";
cout << "Alternative Hypothesis Conclusion\n";

cout << "Standard deviations are unequal (two sided test)\n";
if((ucv2 < F) || (lcv2 > F))
    cout << "ACCEPTED\n";
else
    cout << "REJECTED\n";

cout << "Standard deviation 1 is less than standard deviation 2\n";
if(lcv > F)
    cout << "ACCEPTED\n";
else
    cout << "REJECTED\n";

cout << "Standard deviation 1 is greater than standard deviation 2\n";
if(ucv < F)
    cout << "ACCEPTED\n";
else
    cout << "REJECTED\n";

cout << endl << endl;

Using the ceramic strength data as an example we get the following output:
```
F test for equal standard deviations

Sample 1:
Number of Observations = 240
Sample Standard Deviation = 65.549

Sample 2:
Number of Observations = 240
Sample Standard Deviation = 61.854

Test Statistic = 1.123
CDF of test statistic: = 8.148e-001
Upper Critical Value at alpha: = 1.238e+000
Upper Critical Value at alpha/2: = 1.289e+000
Lower Critical Value at alpha: = 8.080e-001
Lower Critical Value at alpha/2: = 7.756e-001

Results for Alternative Hypothesis and alpha = 0.0500

Alternative Hypothesis
Standard deviations are unequal (two sided test) Conclusion
Standard deviation 1 is less than standard deviation 2 REJECTED
Standard deviation 1 is greater than standard deviation 2 REJECTED

In this case we are unable to reject the null-hypothesis, and must instead reject the alternative hypothesis.

By contrast let's see what happens when we use some different sample data; once again from the NIST Engineering Statistics Handbook: A new procedure to assemble a device is introduced and tested for possible improvement in time of assembly. The question being addressed is whether the standard deviation of the new assembly process (sample 2) is better (i.e., smaller) than the standard deviation for the old assembly process (sample 1).

61
F test for equal standard deviations

<table>
<thead>
<tr>
<th>Sample 1:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
<td>11.00000</td>
</tr>
<tr>
<td>Sample Standard Deviation</td>
<td>4.90820</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample 2:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
<td>9.00000</td>
</tr>
<tr>
<td>Sample Standard Deviation</td>
<td>2.58740</td>
</tr>
</tbody>
</table>

Test Statistic	3.59847
CDF of test statistic:	9.589e-001
Upper Critical Value at alpha:	3.347e+000
Upper Critical Value at alpha/2:	4.295e+000
Lower Critical Value at alpha:	3.256e-001
Lower Critical Value at alpha/2:	2.594e-001

Results for Alternative Hypothesis and alpha	0.0500
Alternative Hypothesis	Conclusion
Standard deviations are unequal (two sided test)	REJECTED
Standard deviation 1 is less than standard deviation 2	REJECTED
Standard deviation 1 is greater than standard deviation 2	ACCEPTED

In this case we take our null hypothesis as "standard deviation 1 is less than or equal to standard deviation 2", since this represents the "no change" situation. So we want to compare the upper critical value at alpha (a one sided test) with the test statistic, and since 3.35 < 3.6 this hypothesis must be rejected. We therefore conclude that there is a change for the better in our standard deviation.

Binomial Distribution Examples

See also the reference documentation for the Binomial Distribution.

Binomial Coin-Flipping Example

An example of a Bernoulli process is coin flipping. A variable in such a sequence may be called a Bernoulli variable.

This example shows using the Binomial distribution to predict the probability of heads and tails when throwing a coin.

The number of correct answers (say heads), X, is distributed as a binomial random variable with binomial distribution parameters number of trials (flips) \(n = 10 \) and probability (success_fraction) of getting a head \(p = 0.5 \) (a 'fair' coin).

(Our coin is assumed fair, but we could easily change the success_fraction parameter \(p \) from 0.5 to some other value to simulate an unfair coin, say 0.6 for one with chewing gum on the tail, so it is more likely to fall tails down and heads up).

First we need some includes and using statements to be able to use the binomial distribution, some std input and output, and get started:
```cpp
#include <boost/math/distributions/binomial.hpp>
using boost::math::binomial;

#include <iostream>
using std::cout; using std::endl; using std::left;
#include <iomanip>
using std::setw;

int main()
{
    cout << "Using Binomial distribution to predict how many heads and tails." << endl;
    try
    {
    See note with the catch block about why a try and catch block is always a good idea.

    First, construct a binomial distribution with parameters success_fraction 1/2, and how many
    flips.

    const double success_fraction = 0.5; // = 50% = 1/2 for a 'fair' coin.
    int flips = 10;
    binomial flip(flips, success_fraction);
    cout.precision(4);

    Then some examples of using Binomial moments (and echoing the parameters).

    cout << "From " << flips << " one can expect to get on average "
    << mean(flip) << " heads (or tails)." << endl;
    cout << "Mode is " << mode(flip) << endl;
    cout << "Standard deviation is " << standard_deviation(flip) << endl;
    cout << "So about 2/3 will lie within 1 standard deviation and get between "
    << ceil(mean(flip) - standard_deviation(flip)) << " and "
    << floor(mean(flip) + standard_deviation(flip)) << " correct." << endl;
    cout << "Skewness is " << skewness(flip) << endl;
    // Skewness of binomial distributions is only zero (symmetrical)
    // if success_fraction is exactly one half,
    // for example, when flipping 'fair' coins.
    cout << "Skewness if success_fraction is " << flip.success_fraction() << " is " << skewness(flip) << endl;
    // Expect zero for a 'fair' coin.

    Now we show a variety of predictions on the probability of heads:

    cout << "For " << flip.trials() << " coin flips: " << endl;
    cout << "Probability of getting no heads is " << pdf(flip, 0) << endl;
    cout << "Probability of getting at least one head is " << 1. - pdf(flip, 0) << endl;

    When we want to calculate the probability for a range or values we can sum the PDF's:

    cout << "Probability of getting 0 or 1 heads is "
    << pdf(flip, 0) + pdf(flip, 1) << endl; // sum of exactly == probabilities

    Or we can use the cdf.

    cout << "Probability of getting 0 or 1 (=1) heads is " << cdf(flip, 1) << endl;
    cout << "Probability of getting 9 or 10 heads is " << pdf(flip, 9) + pdf(flip, 10) << endl;

    Note that using
```
cout << "Probability of getting 9 or 10 heads is " << 1. - cdf(flip, 8) << endl;

is less accurate than using the complement

cout << "Probability of getting 9 or 10 heads is " << cdf(complement(flip, 8)) << endl;

Since the subtraction may involve cancellation error, where as cdf(complement(flip, 8)) does not use such a subtraction internally, and so does not exhibit the problem.

To get the probability for a range of heads, we can either add the pdfs for each number of heads

cout << "Probability of between 4 and 6 heads (4 or 5 or 6) is "
 // P(X == 4) + P(X == 5) + P(X == 6)
 << pdf(flip, 4) + pdf(flip, 5) + pdf(flip, 6) << endl;

But this is probably less efficient than using the cdf

cout << "Probability of between 4 and 6 heads (4 or 5 or 6) is "
 // P(X <= 6) - P(X <= 3) == P(X < 4)
 << cdf(flip, 6) - cdf(flip, 3) << endl;

Certainly for a bigger range like, 3 to 7

cout << "Probability of between 3 and 7 heads (3, 4, 5, 6 or 7) is "
 // P(X <= 7) - P(X <= 2) == P(X < 3)
 << cdf(flip, 7) - cdf(flip, 2) << endl;
cout << endl;

Finally, print two tables of probability for the exactly and at least a number of heads.

// Print a table of probability for the exactly a number of heads.
cout << "Probability of getting exactly (==) heads" << endl;
for (int successes = 0; successes <= flips; successes++) // Say success means getting a head (or equally success means getting a tail).
{ // double probability = pdf(flip, successes);
 double probability = pdf(flip, successes);
 cout << left << setw(2) << successes << " " << setw(10)
 << probability << " or 1 in " << 1. / probability << ", or "
 << probability * 100. << "%" << endl;
} // for i
cout << endl;

// Tabulate the probability of getting between zero heads and 0 upto 10 heads.
cout << "Probability of getting upto (<=) heads" << endl;
for (int successes = 0; successes <= flips; successes++) // Say success means getting a head
{ // (equally success could mean getting a tail).
 double probability = cdf(flip, successes); // P(X <= heads)
 cout << setw(2) << successes << " " << setw(10)
 << probability << " or 1 in " << 1. / probability
 << ", or " << probability * 100. << "%" << endl;
} // for i

The last (0 to 10 heads) must, of course, be 100% probability.
It is always essential to include try & catch blocks because default policies are to throw exceptions on arguments that are out of domain or cause errors like numeric-overflow.

Lacking try & catch blocks, the program will abort, whereas the message below from the thrown exception will give some helpful clues as to the cause of the problem.

```cpp
std::cout << "\n""Message from thrown exception was:\n" << e.what() << std::endl;
```

See binomial_coinflip_example.cpp for full source code, the program output looks like this:
Using Binomial distribution to predict how many heads and tails.
From 10 one can expect to get on average 5 heads (or tails).
Mode is 5
Standard deviation is 1.581
So about 2/3 will lie within 1 standard deviation and get between 4 and 6 correct.
Skewness is 0
Skewness if success_fraction is 0.5 is 0

For 10 coin flips:
- Probability of getting no heads is 0.0009766
- Probability of getting at least one head is 0.999
- Probability of getting 0 or 1 heads is 0.01074
- Probability of getting 0 or 1 (<= 1) heads is 0.01074
- Probability of getting 9 or 10 heads is 0.01074
- Probability of getting 9 or 10 heads is 0.01074
- Probability of between 4 and 6 heads (4 or 5 or 6) is 0.6562
- Probability of between 4 and 6 heads (4 or 5 or 6) is 0.6563
- Probability of between 3 and 7 heads (3, 4, 5, 6 or 7) is 0.8906

<table>
<thead>
<tr>
<th>Probability of getting exactly (=) heads</th>
<th>0</th>
<th>0.0009766 or 1 in 1024, or 0.09766%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.009766 or 1 in 102.4, or 0.9766%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.04395 or 1 in 22.76, or 4.395%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1172 or 1 in 8.533, or 11.72%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2051 or 1 in 4.876, or 20.51%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2461 or 1 in 4.063, or 24.61%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2051 or 1 in 4.876, or 20.51%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.1172 or 1 in 8.533, or 11.72%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.04395 or 1 in 22.76, or 4.395%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.009766 or 1 in 102.4, or 0.9766%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0009766 or 1 in 1024, or 0.09766%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probability of getting upto (<) heads</th>
<th>0</th>
<th>0.0009766 or 1 in 1024, or 0.09766%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01074 or 1 in 93.09, or 1.074%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.05469 or 1 in 18.29, or 5.469%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1719 or 1 in 5.818, or 17.19%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.377 or 1 in 2.653, or 37.7%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.623 or 1 in 1.605, or 62.3%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.8281 or 1 in 1.208, or 82.81%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.9453 or 1 in 1.058, or 94.53%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.9893 or 1 in 1.011, or 98.93%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.999 or 1 in 1.001, or 99.9%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1 or 1 in 1, or 100%</td>
<td></td>
</tr>
</tbody>
</table>

Binomial Quiz Example

A multiple choice test has four possible answers to each of 16 questions. A student guesses the answer to each question, so the probability of getting a correct answer on any given question is one in four, a quarter, 1/4, 25% or fraction 0.25. The conditions of the binomial experiment are assumed to be met: n = 16 questions constitute the trials; each question results in one of two possible outcomes (correct or incorrect); the probability of being correct is 0.25 and is constant if no knowledge about the subject is assumed; the questions are answered independently if the student’s answer to a question in no way influences his/her answer to another question.

First, we need to be able to use the binomial distribution constructor (and some std input/output, of course).
The number of correct answers, X, is distributed as a binomial random variable with binomial distribution parameters: questions n and success fraction probability p. So we construct a binomial distribution:

```cpp
int questions = 16; // All the questions in the quiz.
int answers = 4; // Possible answers to each question.
double success_fraction = 1. / answers; // If a random guess, $p = 1/4 = 0.25$.
binomial quiz(questions, success_fraction);
```

and display the distribution parameters we used thus:

```cpp
cout << "In a quiz with " << quiz.trials() << " questions and with a probability of guessing right of " << quiz.success_fraction() * 100 << " %" << " or 1 in " << static_cast<int>(1. / quiz.success_fraction()) << endl;
```

Show a few probabilities of just guessing:

```cpp
cout << "Probability of getting none right is " << pdf(quiz, 0) << endl; // 0.010023
cout << "Probability of getting exactly one right is " << pdf(quiz, 1) << endl;
cout << "Probability of getting exactly two right is " << pdf(quiz, 2) << endl;
int pass_score = 11;
cout << "Probability of getting exactly " << pass_score << " answers right by chance is " << pdf(quiz, pass_score) << endl;
cout << "Probability of getting all " << questions << " answers right by chance is " << pdf(quiz, questions) << endl;
```

Probability of getting none right is 0.0100226
Probability of getting exactly one right is 0.0534538
Probability of getting exactly two right is 0.133635
Probability of getting exactly 11 right is 0.000247132
Probability of getting exactly all 16 answers right by chance is 2.32831e-010

These don't give any encouragement to guessers!

We can tabulate the 'getting exactly right' (==) probabilities thus:

```cpp
cout << "\n" "Guessed Probability" << right << endl;
for (int successes = 0; successes <= questions; successes++)
{
    double probability = pdf(quiz, successes);
    cout << setw(2) << successes << " " << probability << endl;
}
cout << endl;
```
Guessed Probability
0 0.0100226
1 0.0534538
2 0.133635
3 0.207876
4 0.225199
5 0.180159
6 0.110097
7 0.0524273
8 0.0196602
9 0.00582526
10 0.00135923
11 0.000247132
12 3.43239e-005
13 3.5204e-006
14 2.51457e-007
15 1.11759e-008
16 2.32831e-010

Then we can add the probabilities of some 'exactly right' like this:

```
cout << "Probability of getting none or one right is " << pdf(quiz, 0) + pdf(quiz, 1) << endl;
```

Probability of getting none or one right is 0.0634764

But if more than a couple of scores are involved, it is more convenient (and may be more accurate) to use the Cumulative Distribution Function (cdf) instead:

```
cout << "Probability of getting none or one right is " << cdf(quiz, 1) << endl;
```

Probability of getting none or one right is 0.0634764

Since the cdf is inclusive, we can get the probability of getting up to 10 right (<=)

```
cout << "Probability of getting <= 10 right (to fail) is " << cdf(quiz, 10) << endl;
```

Probability of getting <= 10 right (to fail) is 0.999715

To get the probability of getting 11 or more right (to pass), it is tempting to use

```
1 - cdf(quiz, 10)
```

to get the probability of > 10

```
cout << "Probability of getting > 10 right (to pass) is " << 1 - cdf(quiz, 10) << endl;
```

Probability of getting > 10 right (to pass) is 0.000285239

But this should be resisted in favor of using the complement function. **Why complements?**

```
cout << "Probability of getting > 10 right (to pass) is " << cdf(complement(quiz, 10)) << endl;
```
Probability of getting > 10 right (to pass) is 0.000285239

And we can check that these two, <= 10 and > 10, add up to unity.

```cpp
BOOST_ASSERT((cdf(quiz, 10) + cdf(complement(quiz, 10))) == 1.);
```

If we want a < rather than a <= test, because the CDF is inclusive, we must subtract one from the score.

```cpp
cout << "Probability of getting less than " << pass_score
    << " (<= " << pass_score << ") answers right by guessing is "
    << cdf(quiz, pass_score -1) << endl;
```

Probability of getting less than 11 (< 11) answers right by guessing is 0.999715

and similarly to get a >= rather than a > test we also need to subtract one from the score (and can again check the sum is unity). This is because if the cdf is inclusive, then its complement must be exclusive otherwise there would be one possible outcome counted twice!

```cpp
cout << "Probability of getting at least " << pass_score
    << "(>= " << pass_score << ") answers right by guessing is "
    << cdf(complement(quiz, pass_score-1))
    << ", only 1 in " << 1/cdf(complement(quiz, pass_score-1)) << endl;
BOOST_ASSERT((cdf(quiz, pass_score -1) + cdf(complement(quiz, pass_score-1))) == 1);
```

Probability of getting at least 11 (>= 11) answers right by guessing is 0.000285239, only 1 in 3505.83

Finally we can tabulate some probabilities:

```cpp
cout << "\n" "At most (<=)"\n"Guessed OK   Probability" << right << endl;
for (int score = 0; score <= questions; score++)
{
    cout << setw(2) << score << "           " << setprecision(10)
    << cdf(quiz, score) << endl;
}
cout << endl;
```
We now consider the probabilities of ranges of correct guesses.

First, calculate the probability of getting a range of guesses right, by adding the exact probabilities of each from low ... high.
```cpp
int low = 3; // Getting at least 3 right.
int high = 5; // Getting as most 5 right.
double sum = 0.;
for (int i = low; i <= high; i++)
    { sum += pdf(quiz, i); }
cout.precision(4);
cout << "Probability of getting between "
    << low << " and " << high << " answers right by guessing is "
    << sum << endl; // 0.61323
```

Probability of getting between 3 and 5 answers right by guessing is 0.6132

Or, usually better, we can use the difference of cdfs instead:

```cpp
cout << "Probability of getting between " << low << " and " << high << " answers right by guessing is "
    << cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 0.61323
```

Probability of getting between 3 and 5 answers right by guessing is 0.6132

And we can also try a few more combinations of high and low choices:

```cpp
low = 1; high = 6;
cout << "Probability of getting between " << low << " and " << high << " answers right by guessing is "
    << cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 1 and 6 P = 0.91042
low = 1; high = 8;
cout << "Probability of getting between " << low << " and " << high << " answers right by guessing is "
    << cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 1 <= x <= 8 P = 0.9825
low = 4; high = 4;
cout << "Probability of getting between " << low << " and " << high << " answers right by guessing is "
    << cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 4 <= x <= 4 P = 0.22520
```

Probability of getting between 1 and 6 answers right by guessing is 0.9104
Probability of getting between 1 and 8 answers right by guessing is 0.9825
Probability of getting between 4 and 4 answers right by guessing is 0.2252

Using Binomial distribution moments

Using moments of the distribution, we can say more about the spread of results from guessing.

```cpp
cout << "By guessing, on average, one can expect to get " << mean(quiz) << " correct answers." << endl;
cout << "Standard deviation is " << standard_deviation(quiz) << endl;
cout << "So about 2/3 will lie within 1 standard deviation and get between "
    << ceil(mean(quiz) - standard_deviation(quiz)) << " and "
    << floor(mean(quiz) + standard_deviation(quiz)) << " correct." << endl;
cout << "Mode (the most frequent) is " << mode(quiz) << endl;
cout << "Skewness is " << skewness(quiz) << endl;
```
By guessing, on average, one can expect to get 4 correct answers. Standard deviation is 1.732. So about 2/3 will lie within 1 standard deviation and get between 3 and 5 correct. Mode (the most frequent) is 4. Skewness is 0.2887.

Quantiles

The quantiles (percentiles or percentage points) for a few probability levels:

```
cout << "Quartiles " << quantile(quiz, 0.25) << " to 
   " << quantile(complement(quiz, 0.25)) << endl; // Quartiles
cout << "1 standard deviation " << quantile(quiz, 0.33) << " to 
   " << quantile(quiz, 0.67) << endl; // 1 sd
cout << "Deciles " << quantile(quiz, 0.1) << " to 
   " << quantile(complement(quiz, 0.1)) << endl; // Deciles
cout << "5 to 95% " << quantile(quiz, 0.05) << " to 
   " << quantile(quiz, 0.05) << endl; // 5 to 95%
cout << "2.5 to 97.5% " << quantile(quiz, 0.025) << " to 
   " << quantile(quiz, 0.025) << endl; // 2.5 to 97.5%
cout << "2 to 98% " << quantile(quiz, 0.02) << " to 
   " << quantile(quiz, 0.02) << endl; // 2 to 98%
cout << "If guessing then percentiles 1 to 99% will get " << quantile(quiz, 0.01) << " to 
   " << quantile(complement(quiz, 0.01)) << " right." << endl;
```

Notice that these output integral values because the default policy is integer_round_outwards.

Quantiles values are controlled by the discrete quantile policy chosen. The default is integer_round_outwards, so the lower quantile is rounded down, and the upper quantile is rounded up.

But we might believe that the real values tell us a little more - see Understanding Discrete Quantile Policy.

We could control the policy for all distributions by

```
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
```

at the head of the program would make this policy apply

```
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
```

at the head of the program would make this policy apply to this one, and only, translation unit.

Or we can now create a (typedef for) policy that has discrete quantiles real (here avoiding any 'using namespaces ...' statements):
using boost::math::policies::policy;
using boost::math::policies::discrete_quantile;
using boost::math::policies::real;
using boost::math::policies::integer_round_outwards; // Default.
typedef boost::math::policies::policy<discrete_quantile<real>> > real_quantile_policy;

Add a custom binomial distribution called

\[
\text{real_quantile_binomial}
\]

that uses

\[
\text{real_quantile_policy}
\]

using boost::math::binomial_distribution;
typedef binomial_distribution<double, real_quantile_policy> real_quantile_binomial;

Construct an object of this custom distribution:

\[
\text{real_quantile_binomial}\ \text{quiz_real}(\text{questions, success_fraction});
\]

And use this to show some quantiles - that now have real rather than integer values.

\[
\begin{align*}
\text{cout} & \ll \text{"Quartiles" } \ll \text{quantile(quiz, 0.25)} \ll \text{" to "} \\
& \ll \text{quantile(complement(quiz_real, 0.25))} \ll \text{endl}; \ // \text{Quartiles 2 to 4.6212} \\
\text{cout} & \ll \text{"1 standard deviation" } \ll \text{quantile(quiz_real, 0.33)} \ll \text{" to "} \\
& \ll \text{quantile(quiz_real, 0.67)} \ll \text{endl}; \ // \text{1 sd 2.6654 4.194} \\
\text{cout} & \ll \text{"Deciles" } \ll \text{quantile(quiz_real, 0.1)} \ll \text{" to "} \\
& \ll \text{quantile(complement(quiz_real, 0.1))} \ll \text{endl}; \ // \text{Deciles 1.3487 5.7583} \\
\text{cout} & \ll \text{"5 to 95%" } \ll \text{quantile(quiz_real, 0.05)} \ll \text{" to "} \\
& \ll \text{quantile(complement(quiz_real, 0.05))} \ll \text{endl}; \ // \text{5 to 95% 0.83739 6.4559} \\
\text{cout} & \ll \text{"2.5 to 97.5%" } \ll \text{quantile(quiz_real, 0.025)} \ll \text{" to "} \\
& \ll \text{quantile(complement(quiz_real, 0.025))} \ll \text{endl}; \ // \text{2.5 to 97.5% 0.42806 7.0688} \\
\text{cout} & \ll \text{"2 to 98%" } \ll \text{quantile(quiz_real, 0.02)} \ll \text{" to "} \\
& \ll \text{quantile(complement(quiz_real, 0.02))} \ll \text{endl}; \ // \text{2 to 98% 0.31311 7.7880} \\
\text{cout} & \ll \text{"If guessing, then percentiles 1 to 99% will get" } \ll \text{quantile(quiz_real, 0.01)} \\
& \ll \text{" to " } \ll \text{quantile(complement(quiz_real, 0.01))} \ll \text{" right."} \ll \text{endl;}
\end{align*}
\]

Real Quantiles
Quartiles 2 to 4.621
1 standard deviation 2.665 to 4.194
Deciles 1.349 to 5.758
5 to 95% 0.8374 to 6.456
2.5 to 97.5% 0.4281 to 7.069
2 to 98% 0.3131 to 7.788
If guessing then percentiles 1 to 99% will get 0 to 7.788 right.

See binomial_quiz_example.cpp for full source code and output.

Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution

Imagine you have a process that follows a binomial distribution: for each trial conducted, an event either occurs or does it does not, referred to as “successes” and “failures”. If, by experiment, you want to measure the frequency with which successes occur, the best estimate is given simply by \(k/N\), for \(k\) successes out of \(N\) trials. However our confidence in that estimate will be shaped by how many trials were conducted, and how many successes were observed. The static member functions binomial_distribution::
tion>::find_lower_bound_on_p and binomial_distribution>::find_upper_bound_on_p allow you to calculate the confidence intervals for your estimate of the occurrence frequency.

The sample program binomial_confidence_limits.cpp illustrates their use. It begins by defining a procedure that will print a table of confidence limits for various degrees of certainty:

```cpp
#include <iostream>
#include <iomanip>
#include <boost/math/distributions/binomial.hpp>

void confidence_limits_on_frequency(unsigned trials, unsigned successes)
{
    //
    // trials = Total number of trials.
    // successes = Total number of observed successes.
    //
    // Calculate confidence limits for an observed
    // frequency of occurrence that follows a binomial
    // distribution.
    //
    using namespace std;
    using namespace boost::math;

    // Print out general info:
    cout <<
        "___________________________________________\n        |2-Sided Confidence Limits For Success Ratio|\n        |-----------------------------------------|\n        |\n        |Number of Observations =  | trials|\n        |Number of successes  =  | successes|\n        |Sample frequency of occurrence | double(successes) / trials|\n        |\n    ";
    cout << setprecision(7);
    cout << setw(40) << left << "Number of Observations" << " =  " << trials << 
    cout << setw(40) << left << "Number of successes" << " =  " << successes << 
    cout << setw(40) << left << "Sample frequency of occurrence" << " =  " << double(successes) / trials << 
    "\n    ";
}
```

The procedure now defines a table of significance levels: these are the probabilities that the true occurrence frequency lies outside the calculated interval:

```cpp
double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
```

Some pretty printing of the table header follows:

```cpp
cout << "\n\n";

cout << setw(20) << left << "Confidence Value (%)";
cout << setw(20) << left << "Lower CP Limit";
cout << setw(20) << left << "Upper CP Limit";
cout << setw(20) << left << "Lower JP Limit";
cout << setw(20) << left << "Upper JP Limit\n";
```

And now for the important part - the intervals themselves - for each value of alpha, we call find_lower_bound_on_p and find_upper_bound_on_p to obtain lower and upper bounds respectively. Note that since we are calculating a two-sided interval, we must divide the value of alpha in two.

Please note that calculating two separate single sided bounds, each with risk level α is not the same thing as calculating a two sided interval. Had we calculate two single-sided intervals each with a risk that the true value is outside the interval of α, then:

- The risk that it is less than the lower bound is α.

and

- The risk that it is greater than the upper bound is also α.
So the risk it is outside upper or lower bound, is twice alpha, and the probability that it is inside the bounds is therefore not nearly as high as one might have thought. This is why \(\alpha/2 \) must be used in the calculations below.

In contrast, had we been calculating a single-sided interval, for example: "Calculate a lower bound so that we are \(P\% \) sure that the true occurrence frequency is greater than some value" then we would not have divided by two.

Finally note that `binomial_distribution` provides a choice of two methods for the calculation, we print out the results from both methods in this example:

```cpp
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{
    // Confidence value:
    cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
    // Calculate Clopper Pearson bounds:
    double l = binomial_distribution<>::find_lower_bound_on_p(
        trials, successes, alpha[i]/2);
    double u = binomial_distribution<>::find_upper_bound_on_p(
        trials, successes, alpha[i]/2);
    // Print Clopper Pearson Limits:
    cout << fixed << setprecision(5) << setw(15) << right << l;
    cout << fixed << setprecision(5) << setw(15) << right << u;
    // Calculate Jeffreys Prior Bounds:
    l = binomial_distribution<>::find_lower_bound_on_p(
        trials, successes, alpha[i]/2,
        binomial_distribution<>::jeffreys_prior_interval);
    u = binomial_distribution<>::find_upper_bound_on_p(
        trials, successes, alpha[i]/2,
        binomial_distribution<>::jeffreys_prior_interval);
    // Print Jeffreys Prior Limits:
    cout << fixed << setprecision(5) << setw(15) << right << l;
    cout << fixed << setprecision(5) << setw(15) << right << u << std::endl;
}
cout << endl;
```

And that's all there is to it. Let's see some sample output for a 2 in 10 success ratio, first for 20 trials:
2-Sided Confidence Limits For Success Ratio

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>Lower CP Limit</th>
<th>Upper CP Limit</th>
<th>Lower JP Limit</th>
<th>Upper JP Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
<td>0.12840</td>
<td>0.29588</td>
<td>0.14974</td>
<td>0.26916</td>
</tr>
<tr>
<td>75.000</td>
<td>0.09775</td>
<td>0.34633</td>
<td>0.11653</td>
<td>0.31861</td>
</tr>
<tr>
<td>90.000</td>
<td>0.07135</td>
<td>0.40103</td>
<td>0.08734</td>
<td>0.37274</td>
</tr>
<tr>
<td>95.000</td>
<td>0.05733</td>
<td>0.43661</td>
<td>0.07152</td>
<td>0.40823</td>
</tr>
<tr>
<td>99.000</td>
<td>0.03576</td>
<td>0.50661</td>
<td>0.04655</td>
<td>0.47859</td>
</tr>
<tr>
<td>99.900</td>
<td>0.01905</td>
<td>0.58632</td>
<td>0.02634</td>
<td>0.55960</td>
</tr>
<tr>
<td>99.990</td>
<td>0.01042</td>
<td>0.64997</td>
<td>0.01530</td>
<td>0.62495</td>
</tr>
<tr>
<td>99.999</td>
<td>0.00577</td>
<td>0.70216</td>
<td>0.00901</td>
<td>0.67897</td>
</tr>
</tbody>
</table>

As you can see, even at the 95% confidence level the bounds are really quite wide (this example is chosen to be easily compared to the one in the NIST/SEMATECH e-Handbook of Statistical Methods. [here](https://www.nist.gov/sma/sematech-e-handbook)). Note also that the Clopper-Pearson calculation method (CP above) produces quite noticeably more pessimistic estimates than the Jeffreys Prior method (JP above).

Compare that with the program output for 2000 trials:

2-Sided Confidence Limits For Success Ratio

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>Lower CP Limit</th>
<th>Upper CP Limit</th>
<th>Lower JP Limit</th>
<th>Upper JP Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
<td>0.19382</td>
<td>0.20638</td>
<td>0.19406</td>
<td>0.20613</td>
</tr>
<tr>
<td>75.000</td>
<td>0.18965</td>
<td>0.21072</td>
<td>0.18990</td>
<td>0.21047</td>
</tr>
<tr>
<td>90.000</td>
<td>0.18537</td>
<td>0.21528</td>
<td>0.18561</td>
<td>0.21503</td>
</tr>
<tr>
<td>95.000</td>
<td>0.18267</td>
<td>0.21821</td>
<td>0.18291</td>
<td>0.21796</td>
</tr>
<tr>
<td>99.000</td>
<td>0.17745</td>
<td>0.22400</td>
<td>0.17769</td>
<td>0.22374</td>
</tr>
<tr>
<td>99.900</td>
<td>0.17150</td>
<td>0.23079</td>
<td>0.17173</td>
<td>0.23053</td>
</tr>
<tr>
<td>99.990</td>
<td>0.16658</td>
<td>0.23657</td>
<td>0.16681</td>
<td>0.23631</td>
</tr>
<tr>
<td>99.999</td>
<td>0.16233</td>
<td>0.24169</td>
<td>0.16256</td>
<td>0.24143</td>
</tr>
</tbody>
</table>

Now even when the confidence level is very high, the limits are really quite close to the experimentally calculated value of 0.2. Furthermore the difference between the two calculation methods is now really quite small.

Estimating Sample Sizes for a Binomial Distribution.

Imagine you have a critical component that you know will fail in 1 in N "uses" (for some suitable definition of "use"). You may want to schedule routine replacement of the component so that its chance of failure between routine replacements is less than P%. If the failures follow a binomial distribution (each time the component is "used" it either fails or does not) then the static member function `binomial_distribution::find_maximum_number_of_trials` can be used to estimate the maximum number of "uses" of that component for some acceptable risk level alpha.
The example program `binomial_sample_sizes.cpp` demonstrates its usage. It centres on a routine that prints out a table of maximum sample sizes for various probability thresholds:

```cpp
void find_max_sample_size(
    double p, // success ratio.
    unsigned successes) // Total number of observed successes permitted.
{
    double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
}
```

The routine then declares a table of probability thresholds: these are the maximum acceptable probability that `successes` or fewer events will be observed. In our example, `successes` will be always zero, since we want no component failures, but in other situations non-zero values may well make sense.

```cpp
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{
    // Confidence value:
    cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
    // calculate trials:
    double t = binomial::find_maximum_number_of_trials(
        successes, p, alpha[i]);
    t = floor(t);
    // Print Trials:
    cout << fixed << setprecision(5) << setw(15) << right << t << endl;
}
```

Note that since we're calculating the maximum number of trials permitted, we'll err on the safe side and take the floor of the result. Had we been calculating the minimum number of trials required to observe a certain number of successes using `find_minimum_number_of_trials` we would have taken the ceiling instead.

We'll finish off by looking at some sample output, firstly for a 1 in 1000 chance of component failure with each use:

<table>
<thead>
<tr>
<th>Success ratio</th>
<th>Maximum Number of "successes" permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>Max Number Of Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
<td>692</td>
</tr>
<tr>
<td>75.000</td>
<td>287</td>
</tr>
<tr>
<td>90.000</td>
<td>105</td>
</tr>
<tr>
<td>95.000</td>
<td>51</td>
</tr>
<tr>
<td>99.000</td>
<td>10</td>
</tr>
<tr>
<td>99.900</td>
<td>0</td>
</tr>
<tr>
<td>99.990</td>
<td>0</td>
</tr>
<tr>
<td>99.999</td>
<td>0</td>
</tr>
</tbody>
</table>

So 51 "uses" of the component would yield a 95% chance that no component failures would be observed.

Compare that with a 1 in 1 million chance of component failure:
Maximum Number of Trials

Success ratio = 0.0000010
Maximum Number of "successes" permitted = 0

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>Max Number Of Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
<td>693146</td>
</tr>
<tr>
<td>75.000</td>
<td>287681</td>
</tr>
<tr>
<td>90.000</td>
<td>105360</td>
</tr>
<tr>
<td>95.000</td>
<td>51293</td>
</tr>
<tr>
<td>99.000</td>
<td>10050</td>
</tr>
<tr>
<td>99.900</td>
<td>1000</td>
</tr>
<tr>
<td>99.990</td>
<td>100</td>
</tr>
<tr>
<td>99.999</td>
<td>10</td>
</tr>
</tbody>
</table>

In this case, even 1000 uses of the component would still yield a less than 1 in 1000 chance of observing a component failure (i.e. a 99.9% chance of no failure).

Negative Binomial Distribution Examples

(See also the reference documentation for the Negative Binomial Distribution.)

Calculating Confidence Limits on the Frequency of Occurrence for the Negative Binomial Distribution

Imagine you have a process that follows a negative binomial distribution: for each trial conducted, an event either occurs or does it does not, referred to as "successes" and "failures". The frequency with which successes occur is variously referred to as the success fraction, success ratio, success percentage, occurrence frequency, or probability of occurrence.

If, by experiment, you want to measure the the best estimate of success fraction is given simply by \(\frac{k}{N} \), for \(k \) successes out of \(N \) trials.

However our confidence in that estimate will be shaped by how many trials were conducted, and how many successes were observed. The static member functions `negative_binomial_distribution`::`find_lower_bound_on_p` and `negative_binomial_distribution`::`find_upper_bound_on_p` allow you to calculate the confidence intervals for your estimate of the success fraction.

The sample program `neg_binom_confidence_limits.cpp` illustrates their use.

First we need some includes to access the negative binomial distribution (and some basic std output of course).

```cpp
#include <boost/math/distributions/negative_binomial.hpp>
using boost::math::negative_binomial;
#include <iostream>
using std::cout; using std::endl;
#include <iomanip>
using std::setprecision;
using std::setw; using std::left; using std::fixed; using std::right;
```

First define a table of significance levels: these are the probabilities that the true occurrence frequency lies outside the calculated interval:

```cpp
double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
Confidence value as % is \(1 - \alpha\) * 100, so alpha 0.05 == 95% confidence that the true occurrence frequency lies inside the calculated interval.

We need a function to calculate and print confidence limits for an observed frequency of occurrence that follows a negative binomial distribution.

```cpp
void confidence_limits_on_frequency(unsigned trials, unsigned successes)
{
 // trials = Total number of trials.
 // successes = Total number of observed successes.
 // failures = trials - successes.
 // success_fraction = successes / trials.
 // Print out general info:
 cout << "__
 "2-Sided Confidence Limits For Success Fraction
 "__

 cout << setprecision(7);
 cout << setw(40) << left << "Number of trials" << " = " << trials <<
 "Number of successes" << " = " << successes <<
 "Number of failures" << " = " << trials - successes <<
 "Observed frequency of occurrence" << " = " << double(succe

 // Print table header:
 cout << "___
 "Confidence Value (%) Lower Upper
 "___

 // Now print out the upper and lower limits for the alpha table values.
 for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
 {
 // Confidence value:
 cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
 // Calculate bounds:
 double lower = negative_binomial::find_lower_bound_on_p(trials, successes, alpha[i]/2);
 double upper = negative_binomial::find_upper_bound_on_p(trials, successes, alpha[i]/2);
 // Print limits:
 cout << fixed << setprecision(5) << setw(15) << right << lower;
 cout << fixed << setprecision(5) << setw(15) << right << upper << endl;
 }
} // void confidence_limits_on_frequency(unsigned trials, unsigned successes)
```

And then call `confidence_limits_on_frequency` with increasing numbers of trials, but always the same success fraction 0.1, or 1 in 10.
Let's see some sample output for a 1 in 10 success ratio, first for a mere 20 trials:

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
<td>0.04812</td>
<td>0.13554</td>
</tr>
<tr>
<td>75.000</td>
<td>0.03078</td>
<td>0.17727</td>
</tr>
<tr>
<td>90.000</td>
<td>0.01807</td>
<td>0.22637</td>
</tr>
<tr>
<td>95.000</td>
<td>0.01235</td>
<td>0.26028</td>
</tr>
<tr>
<td>99.000</td>
<td>0.00530</td>
<td>0.33111</td>
</tr>
<tr>
<td>99.900</td>
<td>0.00164</td>
<td>0.41802</td>
</tr>
<tr>
<td>99.990</td>
<td>0.00051</td>
<td>0.49202</td>
</tr>
<tr>
<td>99.999</td>
<td>0.00016</td>
<td>0.55574</td>
</tr>
</tbody>
</table>

As you can see, even at the 95% confidence level the bounds (0.012 to 0.26) are really very wide, and very asymmetric about the observed value 0.1.

Compare that with the program output for a mass 2000 trials:

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
<td>0.09536</td>
<td>0.10445</td>
</tr>
<tr>
<td>75.000</td>
<td>0.09228</td>
<td>0.10776</td>
</tr>
<tr>
<td>90.000</td>
<td>0.08916</td>
<td>0.11125</td>
</tr>
<tr>
<td>95.000</td>
<td>0.08720</td>
<td>0.11352</td>
</tr>
<tr>
<td>99.000</td>
<td>0.08344</td>
<td>0.11802</td>
</tr>
<tr>
<td>99.900</td>
<td>0.07921</td>
<td>0.12336</td>
</tr>
<tr>
<td>99.990</td>
<td>0.07577</td>
<td>0.12795</td>
</tr>
<tr>
<td>99.999</td>
<td>0.07282</td>
<td>0.13206</td>
</tr>
</tbody>
</table>

Now even when the confidence level is very high, the limits (at 99.999%, 0.07 to 0.13) are really quite close and nearly symmetric to the observed value of 0.1.
Estimating Sample Sizes for the Negative Binomial.

Imagine you have an event (let's call it a "failure" - though we could equally well call it a success if we felt it was a 'good' event) that you know will occur in 1 in N trials. You may want to know how many trials you need to conduct to be P% sure of observing at least k such failures. If the failure events follow a negative binomial distribution (each trial either succeeds or fails) then the static member function `negative_binomial_distribution<>::find_minimum_number_of_trials` can be used to estimate the minimum number of trials required to be P% sure of observing the desired number of failures.

The example program `neg_binomial_sample_sizes.cpp` demonstrates its usage.

It centres around a routine that prints out a table of minimum sample sizes for various probability thresholds:

```cpp
void find_number_of_trials(double failures, double p);
```

First define a table of significance levels: these are the maximum acceptable probability that failure or fewer events will be observed.

```cpp
double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
```

Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence that the desired number of failures will be observed.

Much of the rest of the program is pretty-printing, the important part is in the calculation of minimum number of trials required for each value of alpha using:

```cpp
(int)ceil(negative_binomial::find_minimum_number_of_trials(failures, p, alpha[i]));
```

find_minimum_number_of_trials returns a double, so ceil rounds this up to ensure we have an integral minimum number of trials.

```cpp
void find_number_of_trials(double failures, double p)
{
 // trials = number of trials
 // failures = number of failures before achieving required success(es).
 // p = success fraction (0 <= p <= 1.).
 //
 // Calculate how many trials we need to ensure the
 // required number of failures DOES exceed "failures".
 cout << "\n""Target number of failures = " << failures;
 cout << ", Success fraction = " << 100 * p << "%" << endl;
 // Print table header:
 cout << "\n""Confidence Min Number
" Value (%) Of Trials \n" " \n";
 // Now print out the data for the alpha table values.
 for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
 { // Confidence values %:
 cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]) << "
" "find_minimum_number_of_trials
" << setw(6) << right
<< (int)ceil(negative_binomial::find_minimum_number_of_trials(failures, p, alpha[i]))
<< endl;
 }
 cout << endl;
} // void find_number_of_trials(double failures, double p)
```

finally we can produce some tables of minimum trials for the chosen confidence levels:
```c
int main()
{
 find_number_of_trials(5, 0.5);
 find_number_of_trials(50, 0.5);
 find_number_of_trials(500, 0.5);
 find_number_of_trials(50, 0.1);
 find_number_of_trials(500, 0.1);
 find_number_of_trials(5, 0.9);

 return 0;
} // int main()
```

**Note**

Since we're calculating the *minimum* number of trials required, we'll err on the safe side and take the ceiling of the result. Had we been calculating the *maximum* number of trials permitted to observe less than a certain number of *failures* then we would have taken the floor instead. We would also have called `find_minimum_number_of_trials` like this:

```
floor(negative_binomial::find_minimum_number_of_trials(failures, p, alpha[i]))
```

which would give us the largest number of trials we could conduct and still be P% sure of observing *failures or less* failure events, when the probability of success is `p`.

We'll finish off by looking at some sample output, firstly suppose we wish to observe at least 5 "failures" with a 50/50 (0.5) chance of success or failure:

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>Min Number Of Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
<td>11</td>
</tr>
<tr>
<td>75.000</td>
<td>14</td>
</tr>
<tr>
<td>90.000</td>
<td>17</td>
</tr>
<tr>
<td>95.000</td>
<td>18</td>
</tr>
<tr>
<td>99.000</td>
<td>22</td>
</tr>
<tr>
<td>99.900</td>
<td>27</td>
</tr>
<tr>
<td>99.990</td>
<td>31</td>
</tr>
<tr>
<td>99.999</td>
<td>36</td>
</tr>
</tbody>
</table>

So 18 trials or more would yield a 95% chance that at least our 5 required failures would be observed.

Compare that to what happens if the success ratio is 90%:
Target number of failures = 5.000, Success fraction = 90.000%

<table>
<thead>
<tr>
<th>Confidence Value (%)</th>
<th>Min Number Of Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000</td>
<td>57</td>
</tr>
<tr>
<td>75.000</td>
<td>73</td>
</tr>
<tr>
<td>90.000</td>
<td>91</td>
</tr>
<tr>
<td>95.000</td>
<td>103</td>
</tr>
<tr>
<td>99.000</td>
<td>127</td>
</tr>
<tr>
<td>99.900</td>
<td>159</td>
</tr>
<tr>
<td>99.990</td>
<td>189</td>
</tr>
<tr>
<td>99.999</td>
<td>217</td>
</tr>
</tbody>
</table>

So now 103 trials are required to observe at least 5 failures with 95% certainty.

**Negative Binomial Sales Quota Example.**

This example program negative_binomial_example1.cpp (full source code) demonstrates a simple use to find the probability of meeting a sales quota.

Based on a problem by Dr. Diane Evans, Professor of Mathematics at Rose-Hulman Institute of Technology.

Pat is required to sell candy bars to raise money for the 6th grade field trip. There are thirty houses in the neighborhood, and Pat is not supposed to return home until five candy bars have been sold. So the child goes door to door, selling candy bars. At each house, there is a 0.4 probability (40%) of selling one candy bar and a 0.6 probability (60%) of selling nothing.

What is the probability mass (density) function (pdf) for selling the last (fifth) candy bar at the nth house?

The Negative Binomial(r, p) distribution describes the probability of k failures and r successes in k+r Bernoulli(p) trials with success on the last trial. (A Bernoulli trial is one with only two possible outcomes, success or failure, and p is the probability of success). See also [http://en.wikipedia.org/wiki/Bernoulli_distribution](http://en.wikipedia.org/wiki/Bernoulli_distribution) Bernoulli distribution and Bernoulli applications.

In this example, we will deliberately produce a variety of calculations and outputs to demonstrate the ways that the negative binomial distribution can be implemented with this library: it is also deliberately over-commented.

First we need to #define macros to control the error and discrete handling policies. For this simple example, we want to avoid throwing an exception (the default policy) and just return infinity. We want to treat the distribution as if it was continuous, so we choose a discrete_quantile policy of real, rather than the default policy integer_round_outwards.

```cpp
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
```

After that we need some includes to provide easy access to the negative binomial distribution,

**Caution**

It is vital to #include distributions etc after the above #defines

and we need some std library iostream, of course.
It is always sensible to use try and catch blocks because defaults policies are to throw an exception if anything goes wrong.

A simple catch block (see below) will ensure that you get a helpful error message instead of an abrupt program abort.

```cpp
try
{
```

Selling five candy bars means getting five successes, so successes \( r = 5 \). The total number of trials (\( n \), in this case, houses visited) this takes is therefore \( n = \text{successes} + \text{failures} \) or \( k + r = k + 5 \).

```cpp
double sales_quota = 5; // Pat's sales quota - successes (r).
```

At each house, there is a 0.4 probability (40\%) of selling one candy bar and a 0.6 probability (60\%) of selling nothing.

```cpp
double success_fraction = 0.4; // success_fraction (p) - so failure_fraction is 0.6.
```

The Negative Binomial(\( r, p \)) distribution describes the probability of \( k \) failures and \( r \) successes in \( k + r \) Bernoulli(\( p \)) trials with success on the last trial. (A Bernoulli trial is one with only two possible outcomes, success of failure, and \( p \) is the probability of success).

We therefore start by constructing a negative binomial distribution with parameters sales_quota (required successes) and probability of success.

```cpp
negative_binomial nb(sales_quota, success_fraction); // type double by default.
```

To confirm, display the success_fraction & successes parameters of the distribution.

```cpp
cout << "Pat has a sales per house success rate of " << success_fraction << ".\nTherefore he would, on average, sell " << nb.success_fraction() * 100 << " bars after trying 100 houses." << endl;
```

```cpp
int all_houses = 30; // The number of houses on the estate.
```

```cpp
cout << "With a success rate of " << nb.success_fraction() << " , he might expect, on average,\n" " to need to visit about " << success_fraction * all_houses << " houses in order to sell all " << nb.successes() << " bars. " << endl;
```
Pat has a sales per house success rate of 0.4. Therefore he would, on average, sell 40 bars after trying 100 houses. With a success rate of 0.4, he might expect, on average, to need to visit about 12 houses in order to sell all 5 bars.

The random variable of interest is the number of houses that must be visited to sell five candy bars, so we substitute $k = n - 5$ into a negative binomial$(5, 0.4)$ and obtain the probability mass (density) function (pdf or pmf) of the distribution of houses visited. Obviously, the best possible case is that Pat makes sales on all the first five houses.

We calculate this using the pdf function:

```cpp
cout << "Probability that Pat finishes on the " << sales_quota << "th house is "
 << pdf(nb, 5 - sales_quota) << endl; // == pdf(nb, 0)
```

Of course, he could not finish on fewer than 5 houses because he must sell 5 candy bars. So the 5th house is the first that he could possibly finish on.

To finish on or before the 8th house, Pat must finish at the 5th, 6th, 7th or 8th house. The probability that he will finish on exactly on any house is the Probability Density Function (pdf).

```cpp
cout << "Probability that Pat finishes on the 6th house is "
 << pdf(nb, 6 - sales_quota) << endl;
cout << "Probability that Pat finishes on the 7th house is "
 << pdf(nb, 7 - sales_quota) << endl;
cout << "Probability that Pat finishes on the 8th house is "
 << pdf(nb, 8 - sales_quota) << endl;
```

```
Probability that Pat finishes on the 6th house is 0.03072
Probability that Pat finishes on the 7th house is 0.055296
Probability that Pat finishes on the 8th house is 0.077414
```

The sum of the probabilities for these houses is the Cumulative Distribution Function (cdf). We can calculate it by adding the individual probabilities.

```cpp
cout << "\nProbability that Pat finishes on or before the 8th house is sum "
 << pdf(sales_quota) + pdf(6) + pdf(7) + pdf(8) = "
 // Sum each of the mass/density probabilities for houses sales_quota = 5, 6, 7, & 8.
 << pdf(nb, 5 - sales_quota) // 0 failures.
 + pdf(nb, 6 - sales_quota) // 1 failure.
 + pdf(nb, 7 - sales_quota) // 2 failures.
 + pdf(nb, 8 - sales_quota) // 3 failures.
 << endl;
```

```
pdf(sales_quota) + pdf(6) + pdf(7) + pdf(8) = 0.17367
```

Or, usually better, by using the negative binomial cumulative distribution function.

```cpp
cout << "Probability of selling his quota of " << sales_quota
 << " bars\non or before the " << 8 << "th house is "
 << cdf(nb, 8 - sales_quota) << endl;
```
Probability of selling his quota of 5 bars on or before the 8th house is 0.17367

cout << "\nProbability that Pat finishes exactly on the 10th house is \n" << pdf(nb, 10 - sales_quota) << endl;
cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 10 << "th house is \n" << cdf(nb, 10 - sales_quota) << endl;

Probability that Pat finishes exactly on the 10th house is 0.10033
Probability of selling his quota of 5 bars on or before the 10th house is 0.3669

cout << "\nProbability that Pat finishes exactly on the 11th house is \n" << pdf(nb, 11 - sales_quota) << endl;
cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 11 << "th house is \n" << cdf(nb, 11 - sales_quota) << endl;

Probability that Pat finishes on the 11th house is 0.10033
Probability of selling his quota of 5 candy bars
on or before the 11th house is 0.46723

cout << "\nProbability that Pat finishes exactly on the 12th house is \n" << pdf(nb, 12 - sales_quota) << endl;
cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 12 << "th house is \n" << cdf(nb, 12 - sales_quota) << endl;

Probability that Pat finishes on the 12th house is 0.094596
Probability of selling his quota of 5 candy bars
on or before the 12th house is 0.56182

Finally consider the risk of Pat not selling his quota of 5 bars even after visiting all the houses. Calculate the probability that he will sell on or before the last house: Calculate the probability that he would sell all his quota on the very last house.

cout << "\nProbability that Pat finishes on the " << all_houses
<< " house is \n" << pdf(nb, all_houses - sales_quota) << endl;

Probability of selling his quota of 5 bars on the 30th house is

when he'd be very unlucky indeed!

What is the probability that Pat exhausts all 30 houses in the neighborhood, and still doesn't sell the required 5 candy bars?

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << all_houses << "th house is \n" << cdf(nb, all_houses - sales_quota) << endl;
Probability of selling his quota of 5 bars 
on or before the 30th house is 0.99849

/*
 So the risk of failing even after visiting all the houses is 1 - this probability, 1 - cdf(nb,
 all_houses - sales_quota) But using this expression may cause serious inaccuracy, so it would be
 much better to use the complement of the cdf: So the risk of failing even at, or after, the 31th
 (non-existent) houses is 1 - this probability, 1 - cdf(nb, all_houses - sales_quota) But using this
 expression may cause serious inaccuracy. So it would be much better to use the complement of the cdf. Why complements?

We can also use the quantile (percentile), the inverse of the cdf, to predict which house Pat will 
finish on. So for the 8th house:

double p = cdf(nb, (8 - sales_quota));
cout << "Probability of meeting sales quota on or before 8th house is " << p << endl;

If the confidence of meeting sales quota is 0.17367, then the finishing house is 8

Demanding absolute certainty that all 5 will be sold, implies an infinite number of trials. (Of course, there are only 30 houses on the
estate, so he can’t ever be certain of selling his quota).

If the confidence of meeting sales quota is 1, then the finishing house is 1.#INF

And similarly for a few other probabilities:

cout << "If the confidence of meeting sales quota is " << 0. 
<< ", then the finishing house is " << quantile(nb, 0.) + sales_quota << endl;
cout << "If the confidence of meeting sales quota is " << 0.5 
<< ", then the finishing house is " << quantile(nb, 0.5) + sales_quota << endl;
cout << "If the confidence of meeting sales quota is " << 1 - 0.00151 // 30 th 
<< ", then the finishing house is " << quantile(nb, 1 - 0.00151) + sales_quota << endl;

Probability of failing to sell his quota of 5 bars 
even after visiting all 30 houses is 0.0015101

Probability of failing to sell his quota of 5 bars 
even after visiting all 30 houses is 0.0015101

If the confidence of meeting sales quota is 0.17367, then the finishing house is 8

If the confidence of meeting sales quota is 1, then the finishing house is 1.#INF

And similarly for a few other probabilities:
If the confidence of meeting sales quota is 0, then the finishing house is 5
If the confidence of meeting sales quota is 0.5, then the finishing house is 11.337
If the confidence of meeting sales quota is 0.99849, then the finishing house is 30

Notice that because we chose a discrete quantile policy of real, the result can be an 'unreal' fractional house.

If the opposite is true, we don't want to assume any confidence, then this is tantamount to assuming that all the first sales_quota trials will be successful sales.

We can list quantiles for a few probabilities:

double ps[] = {0., 0.001, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 0.999, 1.};
// Confidence as fraction = 1-alpha, as percent = 100 * (1-alpha[i]) 
cout.precision(3);
for (int i = 0; i < sizeof(ps)/sizeof(ps[0]); i++)
{
    cout << "If confidence of meeting quota is " << ps[i]
    "", then finishing house is " << quantile(nb, ps[i]) + sales_quota
    "endl; 
}

We could have applied a ceil function to obtain a 'worst case' integer value for house.

ceil(quantile(nb, ps[i]))

Or, if we had used the default discrete quantile policy, integer_outside, by omitting

#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real

we would have achieved the same effect.

The real result gives some suggestion which house is most likely. For example, compare the real and integer_outside for 95% confidence.
If confidence of meeting quota is 0.95, then finishing house is 20.1
If confidence of meeting quota is 0.95, then finishing house is 21

The real value 20.1 is much closer to 20 than 21, so integer_outside is pessimistic. We could also use integer_round_nearest policy to suggest that 20 is more likely.

Finally, we can tabulate the probability for the last sale being exactly on each house.

```
cout << "\nHouse for " << sales_quota << "th (last) sale. Probability (%)" << endl;
cout.precision(5);
for (int i = (int)sales_quota; i < all_houses+1; i++)
{
 cout << left << setw(3) << i << " \\
 " << setw(8) << cdf(nb, i - sales_quota) << endl;
}
cout << endl;
```

```
House for 5 th (last) sale. Probability (%)
5 0.01024
6 0.04096
7 0.096256
8 0.17367
9 0.26657
10 0.3669
11 0.46723
12 0.56182
13 0.64696
14 0.72074
15 0.78272
16 0.83343
17 0.874
18 0.90583
19 0.93039
20 0.94905
21 0.96304
22 0.97342
23 0.98103
24 0.98655
25 0.99053
26 0.99337
27 0.99539
28 0.99681
29 0.9978
30 0.99849
```

As noted above, using a catch block is always a good idea, even if you do not expect to use it.

```
catch(const std::exception& e)
{
 // Since we have set an overflow policy of ignore_error,
 // an overflow exception should never be thrown.
 std::cout << "\nMessage from thrown exception was:\n " << e.what() << std::endl;
}
```

For example, without a ignore domain error policy, if we asked for

```
pdf(nb, -1)
```

for example, we would get:
Message from thrown exception was:
   Error in function boost::math::pdf(const negative_binomial_distribution<double>&, double):
   Number of failures argument is -1, but must be >= 0!

**Negative Binomial Table Printing Example.**

Example program showing output of a table of values of cdf and pdf for various k failures.
// Print a table of values that can be used to plot
// using Excel, or some other superior graphical display tool.

cout.precision(17); // Use max_digits10 precision, the maximum available for a reference table.
cout << showpoint << endl; // include trailing zeros.
// This is a maximum possible precision for the type (here double) to suit a reference table.
int maxk = static_cast<int>(2. * mynbdist.successes() / mynbdist.success_fraction());
// This maxk shows most of the range of interest, probability about 0.0001 to 0.999.
cout << "\n" << k << " pdf               cdf" << "\n" << endl;
for (int k = 0; k < maxk; k++)
{
    cout << right << setprecision(17) << showpoint
    << right << setw(3) << k  << ", "
    << left << setw(25) << pdf(mynbdist, static_cast<double>(k))
    << left << setw(25) << cdf(mynbdist, static_cast<double>(k))
    << endl;
}
cout << endl;

<table>
<thead>
<tr>
<th>k</th>
<th>pdf</th>
<th>cdf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5258789062500000e-005</td>
<td>1.5258789062500000e-005</td>
</tr>
<tr>
<td>1</td>
<td>9.1552734375000000e-005</td>
<td>0.00010681152347375000</td>
</tr>
<tr>
<td>2</td>
<td>0.0003089947851562522</td>
<td>0.0004158020195312500</td>
</tr>
<tr>
<td>3</td>
<td>0.00077247619628906272</td>
<td>0.0011882781982421875</td>
</tr>
<tr>
<td>4</td>
<td>0.0015932321548461918</td>
<td>0.0027815103530883789</td>
</tr>
<tr>
<td>5</td>
<td>0.0028678178787231476</td>
<td>0.0056493282318115234</td>
</tr>
<tr>
<td>6</td>
<td>0.0046602040529251142</td>
<td>0.0103095332847366336</td>
</tr>
<tr>
<td>7</td>
<td>0.0099006079378364124298</td>
<td>0.017299838364124298</td>
</tr>
<tr>
<td>8</td>
<td>0.009301179241389001</td>
<td>0.02712995628263202</td>
</tr>
<tr>
<td>9</td>
<td>0.013106823898851871</td>
<td>0.040236780187115073</td>
</tr>
<tr>
<td>10</td>
<td>0.016712100471036140</td>
<td>0.056947980658151209</td>
</tr>
<tr>
<td>11</td>
<td>0.020509200578089786</td>
<td>0.077457181236241013</td>
</tr>
<tr>
<td>12</td>
<td>0.02345675668641652</td>
<td>0.101811856922722625</td>
</tr>
<tr>
<td>13</td>
<td>0.028101548869017230</td>
<td>0.12991340579173993</td>
</tr>
<tr>
<td>14</td>
<td>0.031614242477644432</td>
<td>0.1615276482938440</td>
</tr>
<tr>
<td>15</td>
<td>0.03475666725408917</td>
<td>0.19630331499479325</td>
</tr>
<tr>
<td>16</td>
<td>0.03749251568331451</td>
<td>0.2337958306312471</td>
</tr>
<tr>
<td>17</td>
<td>0.039697557787645101</td>
<td>0.27349378847076977</td>
</tr>
<tr>
<td>18</td>
<td>0.041352039326213035</td>
<td>0.3148582783290005</td>
</tr>
<tr>
<td>19</td>
<td>0.042440250924291580</td>
<td>0.35728607875719176</td>
</tr>
<tr>
<td>20</td>
<td>0.042970754060845245</td>
<td>0.40025683281803687</td>
</tr>
<tr>
<td>21</td>
<td>0.042970754060845225</td>
<td>0.44322758687888220</td>
</tr>
<tr>
<td>22</td>
<td>0.042482450037426581</td>
<td>0.48571003691630876</td>
</tr>
<tr>
<td>23</td>
<td>0.041558918514873783</td>
<td>0.5272689554318257</td>
</tr>
<tr>
<td>24</td>
<td>0.040260202311284021</td>
<td>0.56752915774246648</td>
</tr>
<tr>
<td>25</td>
<td>0.038649794218832620</td>
<td>0.60617895196129912</td>
</tr>
<tr>
<td>26</td>
<td>0.036791631035234917</td>
<td>0.64297058299653398</td>
</tr>
<tr>
<td>27</td>
<td>0.03474765153277427</td>
<td>0.6771823452981139</td>
</tr>
<tr>
<td>28</td>
<td>0.032575923312447595</td>
<td>0.71029415784225891</td>
</tr>
<tr>
<td>29</td>
<td>0.030329307911589130</td>
<td>0.74062346575384819</td>
</tr>
<tr>
<td>30</td>
<td>0.028054609818219924</td>
<td>0.76867807557206813</td>
</tr>
<tr>
<td>31</td>
<td>0.0257921421284492545</td>
<td>0.79447021685656061</td>
</tr>
<tr>
<td>32</td>
<td>0.023575629142856460</td>
<td>0.81804584599941710</td>
</tr>
<tr>
<td>33</td>
<td>0.021432390129869489</td>
<td>0.8394782361298651</td>
</tr>
<tr>
<td>34</td>
<td>0.019383705779220189</td>
<td>0.85886194190850684</td>
</tr>
<tr>
<td>35</td>
<td>0.017445353201298231</td>
<td>0.87630727710980494</td>
</tr>
<tr>
<td>36</td>
<td>0.015628112784496322</td>
<td>0.8913538989430121</td>
</tr>
<tr>
<td>37</td>
<td>0.013938587078064250</td>
<td>0.9058739679236549</td>
</tr>
<tr>
<td>38</td>
<td>0.012379666154859701</td>
<td>0.91825364312722524</td>
</tr>
<tr>
<td>39</td>
<td>0.010951243136991251</td>
<td>0.9292048862421649</td>
</tr>
<tr>
<td>40</td>
<td>0.009650783014735539</td>
<td>0.93885566927869002</td>
</tr>
<tr>
<td>41</td>
<td>0.0084738582566109364</td>
<td>0.94732957253530097</td>
</tr>
</tbody>
</table>
Normal Distribution Examples

(See also the reference documentation for the Normal Distribution.)

Some Miscellaneous Examples of the Normal (Gaussian) Distribution

The sample program normal_misc_examples.cpp illustrates their use.

Traditional Tables

First we need some includes to access the normal distribution (and some std output of course).

```cpp
#include <boost/math/distributions/normal.hpp> // for normal_distribution
 using boost::math::normal; // typedef provides default type is double.
#include <iostream>
using std::cout; using std::endl; using std::left; using std::showpoint; using std::noshowpoint;
#include <iomanip>
using std::setw; using std::setprecision;
#include <limits>
using std::numeric_limits;
int main()
{
 cout << "Example: Normal distribution, Miscellaneous Applications.";

 try
 {
 // Traditional tables and values.
```

Let's start by printing some traditional tables.
double step = 1.; // in z
double range = 4; // min and max z = -range to +range.
int precision = 17; // traditional tables are only computed to much lower precision.

// Construct a standard normal distribution s
normal s; // (default mean = zero, and standard deviation = unity)
cout << "Standard normal distribution, mean = " << s.mean() << ", standard deviation = " << s.standard_deviation() << endl;

First the probability distribution function (pdf).
cout << "Probability distribution function values" << endl;
cout << "  z  " "      pdf  " << endl;
cout.precision(5);
for (double z = -range; z < range + step; z += step)
{
    cout << left << setprecision(3) << setw(6) << z << "  " << setprecision(precision) << setw(12) << pdf(s, z) << endl;
}
cout.precision(6); // default

And the area under the normal curve from $-\infty$ up to z, the cumulative distribution function (cdf).

// For a standard normal distribution
cout << "Integral (area under the curve) from - infinity up to z " << endl;
cout << "  z  " "      cdf  " << endl;
for (double z = -range; z < range + step; z += step)
{
    cout << left << setprecision(3) << setw(6) << z << "  " << setprecision(precision) << setw(12) << cdf(s, z) << endl;
}
cout.precision(6); // default

And all this you can do with a nanoscopic amount of work compared to the team of human computers toiling with Milton Abramovitz and Irene Stegen at the US National Bureau of Standards (now NIST). Starting in 1938, their "Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables", was eventually published in 1964, and has been reprinted numerous times since. (A major replacement is planned at Digital Library of Mathematical Functions).

Pretty-printing a traditional 2-dimensional table is left as an exercise for the student, but why bother now that the Math Toolkit lets you write

double z = 2.;
cout << "Area for z = " << z << " is " << cdf(s, z) << endl; // to get the area for z.

Correspondingly, we can obtain the traditional 'critical' values for significance levels. For the 95% confidence level, the significance level usually called alpha, is $0.05 = 1 - 0.95$ (for a one-sided test), so we can write

cout << "95% of area has a z below " << quantile(s, 0.95) << endl;
// 95% of area has a z below 1.64485

and a two-sided test (a comparison between two levels, rather than a one-sided test)

cout << "95% of area has a z between " << quantile(s, 0.975) << " and " << -quantile(s, 0.975) << endl;
// 95% of area has a z between 1.95996 and -1.95996

93
First, define a table of significance levels: these are the probabilities that the true occurrence frequency lies outside the calculated interval.

It is convenient to have an alpha level for the probability that $z$ lies outside just one standard deviation. This will not be some nice neat number like 0.05, but we can easily calculate it,

```cpp
double alphas = cdf(s, -1) * 2; // 0.3173105078629142
cout << setprecision(17) << "Significance level for z == 1 is " << alphas << endl;
```

and place in our array of favorite alpha values.

```cpp
double alpha[] = {0.3173105078629142, // z for 1 standard deviation.
 0.20, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
```

Confidence value as % is $(1 - \alpha) \times 100$ (so $\alpha = 0.05$ == 95% confidence) that the true occurrence frequency lies inside the calculated interval.

```cpp
cout << "level of significance (alpha)" << setprecision(4) << endl;
cout << "2-sided 1 -sided z(\alpha) " << endl;
for (int i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{
 cout << setw(15) << alpha[i] << setw(15) << alpha[i] /2 << setw(10) << quantile(complement(s, \alpha[i]/2)) << endl;
 // Use quantile(complement(s, alpha[i]/2)) to avoid potential loss of accuracy from quantile(s, 1 - alpha[i]/2)
 cout << endl;
}
```

Notice the distinction between one-sided (also called one-tailed) where we are using a $>$ or $<$ test (and not both) and considering the area of the tail (integral) from $z$ up to $\infty$, and a two-sided test where we are using two $>$ and $<$ tests, and thus considering two tails, from $-\infty$ up to $z$ low and $z$ high up to $\infty$.

So the 2-sided values alpha[i] are calculated using alpha[i]/2.

If we consider a simple example of $\alpha = 0.05$, then for a two-sided test, the lower tail area from $-\infty$ up to $-1.96$ is 0.025 ($\alpha/2$) and the upper tail area from $+z$ up to $+1.96$ is also 0.025 ($\alpha/2$), and the area between -1.96 up to 12.96 is $\alpha = 0.95$, and the sum of the two tails is 0.025 + 0.025 = 0.05.

### Standard deviations either side of the Mean

Armed with the cumulative distribution function, we can easily calculate the easy to remember proportion of values that lie within 1, 2 and 3 standard deviations from the mean.

```cpp
cout.precision(3);
cout << showpoint << "cdf(s, s.standard_deviation()) = "
cout << cdf(s, s.standard_deviation()) << endl; // from -infinity to 1 sd
```

To a useful precision, the 1, 2 & 3 percentages are 68, 95 and 99.7, and these are worth memorising as useful ‘rules of thumb’, as, for example, in standard deviation:
Fraction 1 standard deviation within either side of mean is 0.683
Fraction 2 standard deviations within either side of mean is 0.954
Fraction 3 standard deviations within either side of mean is 0.997

We could of course get some really accurate values for these confidence intervals by using `cout.precision(15);`

Fraction 1 standard deviation within either side of mean is 0.682689492137086
Fraction 2 standard deviations within either side of mean is 0.954499736103642
Fraction 3 standard deviations within either side of mean is 0.997300203936740

But before you get too excited about this impressive precision, don’t forget that the confidence intervals of the standard deviation are surprisingly wide, especially if you have estimated the standard deviation from only a few measurements.

**Some simple examples**

**Life of light bulbs**

Examples from K. Krishnamoorthy, Handbook of Statistical Distributions with Applications, ISBN 1 58488 635 8, page 125... implemented using the Math Toolkit library.

A few very simple examples are shown here:

```cpp
// K. Krishnamoorthy, Handbook of Statistical Distributions with Applications,
// ISBN 1 58488 635 8, page 125, example 10.3.5

Mean lifespan of 100 W bulbs is 1100 h with standard deviation of 100 h. Assuming, perhaps with little evidence and much faith, that the distribution is normal, we construct a normal distribution called `bulbs` with these values:

```cpp
double mean_life = 1100.;
double life_standard_deviation = 100.;
normal bulbs(mean_life, life_standard_deviation);
double expected_life = 1000.;
```

The we can use the Cumulative distribution function to predict fractions (or percentages, if * 100) that will last various lifetimes.

```cpp
cout << "Fraction of bulbs that will last at best (<=) " // P(X <= 1000)
    << expected_life << " is " << cdf(bulbs, expected_life) << endl;
cout << "Fraction of bulbs that will last at least (>) " // P(X > 1000)
    << expected_life << " is " << cdf(complement(bulbs, expected_life)) << endl;
double min_life = 900;
double max_life = 1200;
cout << "Fraction of bulbs that will last between "
    << min_life << " and " << max_life << " is "
    << cdf(bulbs, max_life) // P(X <= 1200) - cdf(bulbs, min_life) << endl; // P(X <= 900)
```

Note

Real-life failures are often very ab-normal, with a significant number that ‘dead-on-arrival’ or suffer failure very early in their life: the lifetime of the survivors of ‘early mortality’ may be well described by the normal distribution.

How many onions?

Weekly demand for 5 lb sacks of onions at a store is normally distributed with mean 140 sacks and standard deviation 10.
double mean = 140.; // sacks per week.
double standard_deviation = 10;
normal sacks(mean, standard_deviation);

double stock = 160.; // per week.
cout << "Percentage of weeks overstocked "
 << cdf(sacks, stock) * 100. << endl; // P(X <=160)
// Percentage of weeks overstocked 97.7

So there will be lots of mouldy onions! So we should be able to say what stock level will meet demand 95% of the weeks.

double stock_95 = quantile(sacks, 0.95);
cout << "Store should stock " << int(stock_95) << " sacks to meet 95% of demands." << endl;

And it is easy to estimate how to meet 80% of demand, and waste even less.

double stock_80 = quantile(sacks, 0.80);
cout << "Store should stock " << int(stock_80) << " sacks to meet 8 out of 10 demands."<< endl;

Packing beef

A machine is set to pack 3 kg of ground beef per pack. Over a long period of time it is found that the average packed was 3 kg with a standard deviation of 0.1 kg. Assuming the packing is normally distributed, we can find the fraction (or %) of packages that weigh more than 3.1 kg.

double mean = 3.; // kg
double standard_deviation = 0.1; // kg
normal packs(mean, standard_deviation);

double max_weight = 3.1; // kg
cout << "Percentage of packs > " << max_weight << " is
 << cdf(complement(packs, max_weight)) << endl; // P(X > 3.1)

double under_weight = 2.9;
cout << "fraction of packs <= " << under_weight << " with a mean of " << mean
 << " is " << cdf(complement(packs, under_weight)) << endl;
// fraction of packs <= 2.9 with a mean of 3 is 0.841345
// This is 0.84 - more than the target 0.95
// Want 95% to be over this weight, so what should we set the mean weight to be?
// KK StatCalc says:
double over_mean = 3.0664;
normal xpacks(over_mean, standard_deviation);
cout << "Setting the packer to " << nominal_mean << " will mean that
 << under_weight << " with a mean of " << xpacks.mean()
 << " is " << cdf(complement(xpacks, under_weight)) << endl;
// fraction of packs >= 2.9 with a mean of 3.06449 is 0.950005

double under_fraction = 0.05; // so 95% are above the minimum weight mean - sd = 2.9

donormal nominal_packs(nominal_mean, standard_deviation);
cout << "Setting the packer to " << nominal_mean << " will mean that
 " << fraction_of_packs >> " with a mean of " << nominal_mean
 << " is " << cdf(complement(nominal_packs, under_weight)) << endl;

Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95.
Setting the packer to 3.13263 will mean that fraction of packs ≥ 2.9 is 0.99, but will more than double the mean loss from 0.0644 to 0.133.

Alternatively, we could invest in a better (more precise) packer with a lower standard deviation.

To estimate how much better (how much smaller standard deviation) it would have to be, we need to get the 5% quantile to be located at the under_weight limit, 2.9

```cpp
double p = 0.05; // wanted p th quantile.
cout << "Quantile of " << p << " = " << quantile(packs, p)
   << " mean = " << packs.mean() << " sd = " << packs.standard_deviation() << endl; //
Quantile of 0.05 = 2.83551, mean = 3, sd = 0.1
```

With the current packer (mean = 3, sd = 0.1), the 5% quantile is at 2.8551 kg, a little below our target of 2.9 kg. So we know that the standard deviation is going to have to be smaller.

Let's start by guessing that it (now 0.1) needs to be halved, to a standard deviation of 0.05

```cpp
normal pack05(mean, 0.05);
cout << "Quantile of " << p << " = " << quantile(pack05, p)
   << " mean = " << pack05.mean() << " sd = " << pack05.standard_deviation() << endl;
cout <<"Fraction of packs >= " << under_weight << " with a mean of " << mean
   << " and standard deviation of " << pack05.standard_deviation()
   << " is " << cdf(complement(pack05, under_weight)) << endl;
//
Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.05 is 0.9772
```

So 0.05 was quite a good guess, but we are a little over the 2.9 target, so the standard deviation could be a tiny bit more. So we could do some more guessing to get closer, say by increasing to 0.06

```cpp
normal pack06(mean, 0.06);
cout << "Quantile of " << p << " = " << quantile(pack06, p)
   << " mean = " << pack06.mean() << " sd = " << pack06.standard_deviation() << endl;
cout <<"Fraction of packs >= " << under_weight << " with a mean of " << mean
   << " and standard deviation of " << pack06.standard_deviation()
   << " is " << cdf(complement(pack06, under_weight)) << endl;
//
Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.06 is 0.9522
```

Now we are getting really close, but to do the job properly, we could use root finding method, for example the tools provided, and used elsewhere, in the Math Toolkit, see Root Finding Without Derivatives.

But in this normal distribution case, we could be even smarter and make a direct calculation.
normal s; // For standard normal distribution,
double sd = 0.1;
double x = 2.9; // Our required limit.
// then probability \(p = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt \)
// so that the \(p \) th quantile is located at \(x \),
// in this case the 0.95 (95%) quantile at 2.9 kg pack weight, when the mean is 3 kg.

double prob = pdf(s, (x - mean) / sd);
double qp = quantile(s, 0.95);
cout << "prob = " << prob << " quantile(p) " << qp << endl; // p = 0.241971, quantile(p) 1.64485
// Rearranging, we can directly calculate the required standard deviation:

double sd95 = abs((x - mean)) / qp;
cout << "If we want the " << p << " th quantile to be located at "
<< x << "", would need a standard deviation of " << sd95 << endl;

normal pack95(mean, sd95); // Distribution of the 'ideal better' packer.
cout << "Fraction of packs >= " << under_weight << " with a mean of " << mean
<< " and standard deviation of " << pack95.standard_deviation()
<< " is " << cdf(complement(pack95, under_weight)) << endl;
// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0608 is 0.95

Notice that these two deceptively simple questions (do we over-fill or measure better) are actually very common. The weight of beef might be replaced by a measurement of more or less anything. But the calculations rely on the accuracy of the standard deviation - something that is almost always less good than we might wish, especially if based on a few measurements.

Length of bolts

A bolt is usable if between 3.9 and 4.1 long. From a large batch of bolts, a sample of 50 show a mean length of 3.95 with standard deviation 0.1. Assuming a normal distribution, what proportion is usable? The true sample mean is unknown, but we can use the sample mean and standard deviation to find approximate solutions.

```
normal bolts(3.95, 0.1);
double top = 4.1;
double bottom = 3.9;
cout << "Fraction long enough [ P(X <= " << top " ) ] is " << cdf(bolts, top) << endl;
cout << "Fraction too short [ P(X <= " << bottom " ) ] is " << cdf(bolts, bottom) << endl;
cout << "Fraction OK -between " << bottom " and " << top
<< " [ P(X <= " << top " ) - P(X<= " << bottom " ) ] is "
<< cdf(bolts, top) - cdf(bolts, bottom) << endl;
cout << "Fraction too long [ P(X > " << top " ) ] is "
<< cdf(complement(bolts, top)) << endl;
cout << "95% of bolts are shorter than " << quantile(bolts, 0.95) << endl;
```

Non Central Chi Squared Example

(See also the reference documentation for the Noncentral Chi Squared Distribution.)

Tables of the power function of the \(\chi^2 \) test.

This example computes a table of the power of the \(\chi^2 \) test at the 5% significance level, for various degrees of freedom and non-centrality parameters. The table is deliberately the same as Table 6 from "The Non-Central \(\chi^2 \) and F-Distributions and their applications.", P. B. Patnaik, Biometrika, Vol. 36, No. 1/2 (June 1949), 202-232.
First we need some includes to access the non-central chi squared distribution (and some basic std output of course).

```cpp
#include <boost/math/distributions/non_central_chi_squared.hpp>
#include <iostream>

int main()
{

Create a table of the power of the $\chi^2$ test at 5% significance level, start with a table header:

```cpp
std::cout << "[table[n|[nu]]];
for(int lam = 2; lam <= 20; lam += 2)
{
 std::cout << "|[lambda]=" << lam << "|";
}
std::cout << "]\n";
```

(Note: the enclosing [] brackets are to format as a table in Boost.Quickbook).

Enumerate the rows and columns and print the power of the test for each table cell:

```cpp
for(int n = 2; n <= 20; ++n)
{
 std::cout << "|n|"
 for(int lam = 2; lam <= 20; lam += 2)
 {

Calculate the χ^2 statistic for a 5% significance:

```cpp
double cs = quantile(complement(boost::math::chi_squared(n), 0.05));
```

The power of the test is given by the complement of the CDF of the non-central χ^2 distribution:

```cpp
double beta = cdf(complement(boost::math::non_central_chi_squared(n, lam), cs));
```

Then output the cell value:

```cpp
    std::cout << "|n|"
    for(int lam = 2; lam <= 20; lam += 2)
    {
        double cs = quantile(complement(boost::math::chi_squared(n), 0.05));
        double beta = cdf(complement(boost::math::non_central_chi_squared(n, lam), cs));
        std::cout << "|" << std::setprecision(3) << beta << "|
```

The output from this program is a table in Boost.Quickbook format as shown below.

We can interpret this as follows - for example if $\nu=10$ and $\lambda=10$ then the power of the test is 0.542 - so we have only a 54% chance of correctly detecting that our null hypothesis is false, and a 46% chance of incurring a type II error (failing to reject the null hypothesis when it is in fact false):
<table>
<thead>
<tr>
<th>ν</th>
<th>λ=2</th>
<th>λ=4</th>
<th>λ=6</th>
<th>λ=8</th>
<th>λ=10</th>
<th>λ=12</th>
<th>λ=14</th>
<th>λ=16</th>
<th>λ=18</th>
<th>λ=20</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.226</td>
<td>0.415</td>
<td>0.584</td>
<td>0.718</td>
<td>0.815</td>
<td>0.883</td>
<td>0.928</td>
<td>0.957</td>
<td>0.974</td>
<td>0.985</td>
</tr>
<tr>
<td>3</td>
<td>0.192</td>
<td>0.359</td>
<td>0.518</td>
<td>0.654</td>
<td>0.761</td>
<td>0.84</td>
<td>0.896</td>
<td>0.934</td>
<td>0.959</td>
<td>0.975</td>
</tr>
<tr>
<td>4</td>
<td>0.171</td>
<td>0.32</td>
<td>0.47</td>
<td>0.605</td>
<td>0.716</td>
<td>0.802</td>
<td>0.866</td>
<td>0.912</td>
<td>0.943</td>
<td>0.964</td>
</tr>
<tr>
<td>5</td>
<td>0.157</td>
<td>0.292</td>
<td>0.433</td>
<td>0.564</td>
<td>0.677</td>
<td>0.769</td>
<td>0.839</td>
<td>0.89</td>
<td>0.927</td>
<td>0.952</td>
</tr>
<tr>
<td>6</td>
<td>0.146</td>
<td>0.27</td>
<td>0.403</td>
<td>0.531</td>
<td>0.644</td>
<td>0.738</td>
<td>0.813</td>
<td>0.869</td>
<td>0.911</td>
<td>0.94</td>
</tr>
<tr>
<td>7</td>
<td>0.138</td>
<td>0.252</td>
<td>0.378</td>
<td>0.502</td>
<td>0.614</td>
<td>0.71</td>
<td>0.788</td>
<td>0.849</td>
<td>0.895</td>
<td>0.928</td>
</tr>
<tr>
<td>8</td>
<td>0.131</td>
<td>0.238</td>
<td>0.357</td>
<td>0.477</td>
<td>0.588</td>
<td>0.685</td>
<td>0.765</td>
<td>0.829</td>
<td>0.879</td>
<td>0.915</td>
</tr>
<tr>
<td>9</td>
<td>0.125</td>
<td>0.225</td>
<td>0.339</td>
<td>0.454</td>
<td>0.564</td>
<td>0.661</td>
<td>0.744</td>
<td>0.811</td>
<td>0.863</td>
<td>0.903</td>
</tr>
<tr>
<td>10</td>
<td>0.121</td>
<td>0.215</td>
<td>0.323</td>
<td>0.435</td>
<td>0.542</td>
<td>0.64</td>
<td>0.723</td>
<td>0.793</td>
<td>0.848</td>
<td>0.891</td>
</tr>
<tr>
<td>11</td>
<td>0.117</td>
<td>0.206</td>
<td>0.309</td>
<td>0.417</td>
<td>0.523</td>
<td>0.62</td>
<td>0.704</td>
<td>0.775</td>
<td>0.833</td>
<td>0.878</td>
</tr>
<tr>
<td>12</td>
<td>0.113</td>
<td>0.198</td>
<td>0.297</td>
<td>0.402</td>
<td>0.505</td>
<td>0.601</td>
<td>0.686</td>
<td>0.759</td>
<td>0.818</td>
<td>0.866</td>
</tr>
<tr>
<td>13</td>
<td>0.11</td>
<td>0.191</td>
<td>0.286</td>
<td>0.387</td>
<td>0.488</td>
<td>0.584</td>
<td>0.669</td>
<td>0.743</td>
<td>0.804</td>
<td>0.854</td>
</tr>
<tr>
<td>14</td>
<td>0.108</td>
<td>0.185</td>
<td>0.276</td>
<td>0.374</td>
<td>0.473</td>
<td>0.567</td>
<td>0.653</td>
<td>0.728</td>
<td>0.791</td>
<td>0.842</td>
</tr>
<tr>
<td>15</td>
<td>0.105</td>
<td>0.179</td>
<td>0.267</td>
<td>0.362</td>
<td>0.459</td>
<td>0.552</td>
<td>0.638</td>
<td>0.713</td>
<td>0.777</td>
<td>0.83</td>
</tr>
<tr>
<td>16</td>
<td>0.103</td>
<td>0.174</td>
<td>0.259</td>
<td>0.351</td>
<td>0.446</td>
<td>0.538</td>
<td>0.623</td>
<td>0.699</td>
<td>0.764</td>
<td>0.819</td>
</tr>
<tr>
<td>17</td>
<td>0.101</td>
<td>0.169</td>
<td>0.251</td>
<td>0.341</td>
<td>0.434</td>
<td>0.525</td>
<td>0.609</td>
<td>0.686</td>
<td>0.752</td>
<td>0.807</td>
</tr>
<tr>
<td>18</td>
<td>0.0992</td>
<td>0.165</td>
<td>0.244</td>
<td>0.332</td>
<td>0.423</td>
<td>0.512</td>
<td>0.596</td>
<td>0.673</td>
<td>0.74</td>
<td>0.796</td>
</tr>
<tr>
<td>19</td>
<td>0.0976</td>
<td>0.161</td>
<td>0.238</td>
<td>0.323</td>
<td>0.412</td>
<td>0.5</td>
<td>0.584</td>
<td>0.66</td>
<td>0.728</td>
<td>0.786</td>
</tr>
<tr>
<td>20</td>
<td>0.0961</td>
<td>0.158</td>
<td>0.232</td>
<td>0.315</td>
<td>0.402</td>
<td>0.489</td>
<td>0.572</td>
<td>0.648</td>
<td>0.716</td>
<td>0.775</td>
</tr>
</tbody>
</table>

See `nc_chi_sq_example.cpp` for the full C++ source code.

Error Handling Example

See error handling documentation for a detailed explanation of the mechanism of handling errors, including the common "bad" arguments to distributions and functions, and how to use Policies to control it.

But, by default, **exceptions will be raised**, for domain errors, pole errors, numeric overflow, and internal evaluation errors. To avoid the exceptions from getting thrown and instead get an appropriate value returned, usually a NaN (domain errors pole errors or internal errors), or in finity (from overflow), you need to change the policy.

The following example demonstrates the effect of setting the macro `BOOST_MATH_DOMAIN_ERROR_POLICY` when an invalid argument is encountered. For the purposes of this example, we'll pass a negative degrees of freedom parameter to the student's t distribution.

Since we know that this is a single file program we could just add:
to the top of the source file to change the default policy to one that simply returns a NaN when a domain error occurs. Alternatively we could use:

```
#define BOOST_MATH_DOMAIN_ERROR_POLICY errno_on_error
```

To ensure the ::errno is set when a domain error occurs as well as returning a NaN.

This is safe provided the program consists of a single translation unit and we place the define before any #includes. Note that should we add the define after the includes then it will have no effect! A warning such as:

```
warning C4005: 'BOOST_MATH_OVERFLOW_ERROR_POLICY' : macro redefinition
```

is a certain sign that it will not have the desired effect.

We'll begin our sample program with the needed includes:

```
// Boost
#include <boost/math/distributions/students_t.hpp>
   using boost::math::students_t; // Probability of students_t(df, t).

// std
#include <iostream>
   using std::cout;
   using std::endl;
#include <stdexcept>
   using std::exception;
```

Next we'll define the program's main() to call the student's t distribution with an invalid degrees of freedom parameter, the program is set up to handle either an exception or a NaN:
```c++
int main()
{
    cout << "Example error handling using Student's t function. " << endl;
    cout << "BOOST_MATH_DOMAIN_ERROR_POLICY is set to: " << 
        BOOST_STRINGIZE(BOOST_MATH_DOMAIN_ERROR_POLICY) << endl;

double degrees_of_freedom = -1; // A bad argument!
double t = 10;

    try
    {
        errno = 0;
        students_t dist(degrees_of_freedom); // exception is thrown here if enabled
        double p = cdf(dist, t);
        // test for error reported by other means:
        if((boost::math::isnan)(p))
        {
            cout << "cdf returned a NaN!" << endl;
            cout << "errno is set to: " << errno << endl;
        }
        else
        
            cout << "Probability of Student's t is " << p << endl;
    }
    catch(const std::exception& e)
    {
        std::cout << "Message from thrown exception was:
                   \n                   " << e.what() << std::endl;
    }
    return 0;
} // int main()
```

Here’s what the program output looks like with a default build (one that does throw exceptions):

Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: throw_on_error

Message from thrown exception was:
Error in function boost::math::students_t_distribution<double>::students_t_distribution:
Degrees of freedom argument is -1, but must be > 0!

Alternatively let’s build with:

```
#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error
```

Now the program output is:

Example error handling using Student's t function.
CDF returned a NaN!
errno is set to: 0

And finally let’s build with:

```
#define BOOST_MATH_DOMAIN_ERROR_POLICY errno_on_error
```

Which gives the output:
Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: errno_on_error
cdf returned a NaN!
erro is set to: 33

Caution

If throwing of exceptions is enabled (the default) but you do not have try & catch block, then the program will terminate with an uncaught exception and probably abort.

Therefore to get the benefit of helpful error messages, enabling all exceptions and using try & catch is recommended for most applications.

However, for simplicity, the is not done for most examples.

Find Location and Scale Examples

Find Location (Mean) Example

First we need some includes to access the normal distribution, the algorithms to find location (and some std output of course).

```cpp
#include <boost/math/distributions/normal.hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.
#include <boost/math/distributions/cauchy.hpp> // for cauchy_distribution
using boost::math::cauchy; // typedef provides default type is double.
#include <boost/math/distributions/find_location.hpp>
using boost::math::find_location; // for mean
#include <boost/math/distributions/find_scale.hpp>
using boost::math::find_scale; // for standard deviation
using boost::math::complement; // Needed if you want to use the complement version.
using boost::math::policies::policy;
#include <iostream>
using std::cout; using std::endl;
#include <iomanip>
using std::setw; using std::setprecision;
#include <limits>
using std::numeric_limits;
```

For this example, we will use the standard normal distribution, with mean (location) zero and standard deviation (scale) unity. This is also the default for this implementation.

```cpp
normal N01; // Default 'standard' normal distribution with zero mean and
double sd = 1.; // normal default standard deviation is 1.
```

Suppose we want to find a different normal distribution whose mean is shifted so that only fraction p (here 0.001 or 0.1%) are below a certain chosen limit (here -2, two standard deviations).
double z = -2.; // z to give prob p
double p = 0.001; // only 0.1% below z

cout << "Normal distribution with mean = " << N01.location()
 << " standard deviation " << N01.scale()
 << " has " << "fraction <= " << z
 << " p = " << cdf(N01, z) << endl;
cout << "Normal distribution with mean = " << N01.location()
 << " standard deviation " << N01.scale()
 << " has " << "fraction > " << z
 << " p = " << cdf(complement(N01, z)) << endl; // Note: uses complement.

Normal distribution with mean = 0, standard deviation 1, has fraction <= -2, p = 0.0227501
Normal distribution with mean = 0, standard deviation 1, has fraction > -2, p = 0.97725

We can now use "find_location" to give a new offset mean.

double l = find_location<normal>(z, p, sd);
cout << "offset location (mean) = " << l << endl;

that outputs:

offset location (mean) = 1.09023

showing that we need to shift the mean just over one standard deviation from its previous value of zero.

Then we can check that we have achieved our objective by constructing a new distribution with the offset mean (but same standard deviation):

normal np001pc(l, sd); // Same standard_deviation (scale) but with mean (location) shifted.

And re-calculating the fraction below our chosen limit.

cout << "Normal distribution with mean = " << l
 << " has " << "fraction <= " << z
 << " p = " << cdf(np001pc, z) << endl;
cout << "Normal distribution with mean = " << l
 << " has " << "fraction > " << z
 << " p = " << cdf(complement(np001pc, z)) << endl;

Normal distribution with mean = 1.09023 has fraction <= -2, p = 0.001
Normal distribution with mean = 1.09023 has fraction > -2, p = 0.999

Controlling Error Handling from find_location

We can also control the policy for handling various errors. For example, we can define a new (possibly unwise) policy to ignore domain errors ('bad' arguments).

Unless we are using the boost::math namespace, we will need:

```cpp
using boost::math::policies::policy;
using boost::math::policies::domain_error;
using boost::math::policies::ignore_error;
```

Using a typedef is often convenient, especially if it is re-used, although it is not required, as the various examples below show.
typedef policy<domain_error<ignore_error>> ignore_domain_policy;

// find_location with new policy, using typedef.
l = find_location<normal>(z, p, sd, ignore_domain_policy());
// Default policy policy<> needs "using boost::math::policies::policy;"
l = find_location<normal>(z, p, sd, policy<>());
// Default policy, fully specified.
l = find_location<normal>(z, p, sd, boost::math::policies::policy<>());
// A new policy, ignoring domain errors, without using a typedef.
l = find_location<normal>(z, p, sd, policy<domain_error<ignore_error>>());

If we want to use a probability that is the complement of our probability, we should not even think of writing find_location<normal>(z, 1 - p, sd), but, to avoid loss of accuracy, use the complement version.

z = 2.;
double q = 0.95; // = 1 - p; // complement.
l = find_location<normal>(complement(z, q, sd));
normal np95pc(l, sd); // Same standard_deviation (scale) but with mean(location) shifted
cout << "Normal distribution with mean = " << l << " has " << "fraction <= " << z << " = " << cdf(np95pc, z) << endl;
cout << "Normal distribution with mean = " << l << " has " << "fraction > " << z << " = " << cdf(complement(np95pc, z)) << endl;

See find_location_example.cpp for full source code: the program output looks like this:

Example: Find location (mean).
Normal distribution with mean = 0, standard deviation 1, has fraction <= -2, p = 0.0227501
Normal distribution with mean = 0, standard deviation 1, has fraction > -2, p = 0.97725
Normal distribution with mean = 1.09023 has fraction <= -2, p = 0.001
Normal distribution with mean = 1.09023 has fraction > -2, p = 0.999
Normal distribution with mean = 0.355146 has fraction <= 2 = 0.95
Normal distribution with mean = 0.355146 has fraction > 2 = 0.05

Find Scale (Standard Deviation) Example

First we need some includes to access the Normal Distribution, the algorithms to find scale (and some std output of course).

#include <boost/math/distributions/normal.hpp> // for normal_distribution
#include <boost/math/distributions/find_scale.hpp>
#include <iostream>

#include <boost/math/distributions/normal.hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.
#include <boost/math/distributions/find_scale.hpp>
using boost::math::find_scale;
#include <iostream>
using std::cout; using std::endl;
#include <iostream>
using std::setw; using std::setprecision;

For this example, we will use the standard Normal Distribution, with location (mean) zero and standard deviation (scale) unity. Conveniently, this is also the default for this implementation’s constructor.

normal N01; // Default 'standard' normal distribution with zero mean
double sd = 1.; // and standard deviation is 1.
Suppose we want to find a different normal distribution with standard deviation so that only fraction \(p \) (here 0.001 or 0.1\%) are below a certain chosen limit (here -2 standard deviations).

```cpp
double z = -2.; // z to give prob p
double p = 0.001; // only 0.1% below z = -2

cout << "Normal distribution with mean = " << N01.location() // aka N01.mean() << ", standard deviation " << N01.scale() // aka N01.standard_deviation() << ", has " << "fraction <= " << z << ", p = " << cdf(N01, z) << endl;
cout << "Normal distribution with mean = " << N01.location() << ", standard deviation " << N01.scale() << ", has " << "fraction > " << z << ", p = " << cdf(complement(N01, z)) << endl; // Note: uses complement.
```

Normal distribution with mean = 0 has fraction <= -2, p = 0.0227501
Normal distribution with mean = 0 has fraction > -2, p = 0.97725

Noting that \(p = 0.02 \) instead of our target of 0.001, we can now use find_scale to give a new standard deviation.

```cpp
double l = N01.location();
double s = find_scale<normal>(z, p, l);
cout << "scale (standard deviation) = " << s << endl;
```

that outputs:

```
scale (standard deviation) = 0.647201
```

showing that we need to reduce the standard deviation from 1. to 0.65.

Then we can check that we have achieved our objective by constructing a new distribution with the new standard deviation (but same zero mean):

```
normal np001pc(N01.location(), s);
```

And re-calculating the fraction below (and above) our chosen limit.

```cpp
cout << "Normal distribution with mean = " << l << ", has " << "fraction <= " << z << ", p = " << cdf(np001pc, z) << endl;
cout << "Normal distribution with mean = " << l << ", has " << "fraction > " << z << ", p = " << cdf(complement(np001pc, z)) << endl;
```

Normal distribution with mean = 0 has fraction <= -2, p = 0.001
Normal distribution with mean = 0 has fraction > -2, p = 0.999

Controlling how Errors from find_scale are handled

We can also control the policy for handling various errors. For example, we can define a new (possibly unwise) policy to ignore domain errors (‘bad’ arguments).

Unless we are using the boost::math namespace, we will need:
using boost::math::policies::policy;
using boost::math::policies::domain_error;
using boost::math::policies::ignore_error;

Using a typedef is convenient, especially if it is re-used, although it is not required, as the various examples below show.

```cpp
typedef policy<domain_error<ignore_error> > ignore_domain_policy;
// find_scale with new policy, using typedef.
l = find_scale<normal>(z, p, l, ignore_domain_policy());
// Default policy policy<>(), needs using boost::math::policies::policy;
l = find_scale<normal>(z, p, l, policy<>());
// Default policy, fully specified.
l = find_scale<normal>(z, p, l, boost::math::policies::policy<>());
// New policy, without typedef.
l = find_scale<normal>(z, p, l, policy<domain_error<ignore_error> >());
```

If we want to express a probability, say 0.999, that is a complement, 1 - p we should not even think of writing `find_scale<normal>(z, 1 - p, l)` but instead, use the `complements` version.

```cpp
z = -2.;
double q = 0.999; // = 1 - p; // complement of 0.001.
sd = find_scale<normal>(complement(z, q, l));

normal np95pc(l, sd); // Same standard_deviation (scale) but with mean(scale) shifted
cout << "Normal distribution with mean = " << l << " has " <<
    "fraction <= " << z << " = " << cdf(np95pc, z) << endl;
cout << "Normal distribution with mean = " << l << " has " <<
    "fraction > " << z << " = " << cdf(complement(np95pc, z)) << endl;
```

Sadly, it is all too easy to get probabilities the wrong way round, when you may get a warning like this:

```plaintext
Message from thrown exception was:
Error in function boost::math::find_scale<Dist, Policy>(complement(double, double, double, J
Policy)):
Computed scale (-0.48043523852179076) is <= 0! Was the complement intended?
```

The default error handling policy is to throw an exception with this message, but if you chose a policy to ignore the error, the (impossible) negative scale is quietly returned.

See `find_scale_example.cpp` for full source code: the program output looks like this:

```plaintext
Example: Find scale (standard deviation).
Normal distribution with mean = 0, standard deviation 1, has fraction <= -2, p = 0.0227501
Normal distribution with mean = 0, standard deviation 1, has fraction > -2, p = 0.97725
scale (standard deviation) = 0.647201
Normal distribution with mean = 0 has fraction <= -2, p = 0.001
Normal distribution with mean = 0 has fraction > -2, p = 0.999
Normal distribution with mean = 0.946339 has fraction <= -2 = 0.001
Normal distribution with mean = 0.946339 has fraction > -2 = 0.999
```

Find mean and standard deviation example

First we need some includes to access the normal distribution, the algorithms to find location and scale (and some std output of course).
Using find_location and find_scale to meet dispensing and measurement specifications

"A machine is set to pack 3 kg of ground beef per pack. Over a long period of time it is found that the average packed was 3 kg with a standard deviation of 0.1 kg. Assume the packing is normally distributed."

We start by constructing a normal distribution with the given parameters:

```cpp
double mean = 3.; // kg
double standard_deviation = 0.1; // kg
normal packs(mean, standard_deviation);
```

We can then find the fraction (or %) of packages that weigh more than 3.1 kg.

```cpp
double max_weight = 3.1; // kg
cout << "Percentage of packs > " << max_weight << " is " << cdf(complement(packs, max_weight)) * 100. << endl; // P(X > 3.1)
```

We might want to ensure that 95% of packs are over a minimum weight specification, then we want the value of the mean such that P(X < 2.9) = 0.05.

Using the mean of 3 kg, we can estimate the fraction of packs that fail to meet the specification of 2.9 kg.

```cpp
double minimum_weight = 2.9;
cout << "Fraction of packs <= " << minimum_weight << " with a mean of " << mean << " is " << cdf(complement(packs, minimum_weight)) << endl;
```

This is 0.84 - more than the target fraction of 0.95. If we want 95% to be over the minimum weight, what should we set the mean weight to be?

Using the KK StatCalc program supplied with the book and the method given on page 126 gives 3.06449.

We can confirm this by constructing a new distribution which we call 'xpacks' with a safety margin mean of 3.06449 thus:
\texttt{double over_mean = 3.06449;} \\
\texttt{normal xpacks(over_mean, standard_deviation);} \\
\texttt{cout << "Fraction of packs >= " << minimum_weight} \\
\texttt{<< " with a mean of " << xpacks.mean()} \\
\texttt{<< " is " << cdf(complement(xpacks, minimum_weight)) << endl;} \\
\texttt{\// fraction of packs >= 2.9 with a mean of 3.06449 is 0.950005}

Using this Math Toolkit, we can calculate the required mean directly thus:

\texttt{double under_fraction = 0.05; // so 95\% are above the minimum weight mean - sd = 2.9} \\
\texttt{double low_limit = standard_deviation;} \\
\texttt{double offset = mean - low_limit - quantile(packs, under_fraction);} \\
\texttt{double nominal_mean = mean + offset;} \\
\texttt{\// mean + (mean - low_limit - quantile(packs, under_fraction));}

\texttt{normal nominal_packs(nominal_mean, standard_deviation);} \\
\texttt{cout << "Setting the packer to " << nominal_mean << " will mean that "} \\
\texttt{<< "fraction of packs >= " << minimum_weight} \\
\texttt{<< " is " << cdf(complement(nominal_packs, minimum_weight)) << endl;} \\
\texttt{\// Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95}

This calculation is generalized as the free function called \texttt{find_location}.

To use this we will need to

\texttt{#include <boost/math/distributions/find_location.hpp>} \\
\texttt{using boost::math::find_location;} \\
\texttt{and then use find_location function to find safe_mean, & construct a new normal distribution called 'goodpacks'.}

\texttt{double safe_mean = find_location<normal>(minimum_weight, under_fraction, standard_deviation);} \\
\texttt{normal good_packs(safe_mean, standard_deviation);} \\
\texttt{with the same confirmation as before:}

\texttt{cout << "Setting the packer to " << nominal_mean << " will mean that "} \\
\texttt{<< "fraction of packs >= " << minimum_weight} \\
\texttt{<< " is " << cdf(complement(good_packs, minimum_weight)) << endl;} \\
\texttt{\// Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95}

\textbf{Using Cauchy-Lorentz instead of normal distribution}

After examining the weight distribution of a large number of packs, we might decide that, after all, the assumption of a normal distribution is not really justified. We might find that the fit is better to a Cauchy Distribution. This distribution has wider 'wings', so that whereas most of the values are closer to the mean than the normal, there are also more values than 'normal' that lie further from the mean than the normal.

This might happen because a larger than normal lump of meat is either included or excluded.

We first create a Cauchy Distribution with the original mean and standard deviation, and estimate the fraction that lie below our minimum weight specification.

\texttt{cauchy cpacks(mean, standard_deviation);} \\
\texttt{cout << "Cauchy Setting the packer to " << mean << " will mean that "} \\
\texttt{<< "fraction of packs >= " << minimum_weight} \\
\texttt{<< " is " << cdf(complement(cpacks, minimum_weight)) << endl;} \\
\texttt{\// Cauchy Setting the packer to 3 will mean that fraction of packs >= 2.9 is 0.75}
Note that far fewer of the packs meet the specification, only 75% instead of 95%. Now we can repeat the find_location, using the cauchy distribution as template parameter, in place of the normal used above.

```cpp
double lc = find_location<cauchy>(minimum_weight, under_fraction, standard_deviation);
cout << "find_location<cauchy>(minimum_weight, over_fraction, standard_deviation); " << lc << endl;
// find_location<cauchy>(minimum_weight, over_fraction, packs.standard_deviation()); 3.53138
```

Note that the safe_mean setting needs to be much higher, 3.53138 instead of 3.06449, so we will make rather less profit.

And again confirm that the fraction meeting specification is as expected.

```cpp
caucho goodcpacks(lc, standard_deviation);
cout << "Cauchy Setting the packer to " << lc " will mean that "
<< "fraction of packs >= " << minimum_weight
<< " is " << cdf(complement(goodcpacks, minimum_weight)) << endl;
// Cauchy Setting the packer to 3.53138 will mean that fraction of packs >= 2.9 is 0.95
```

Finally we could estimate the effect of a much tighter specification, that 99% of packs met the specification.

```cpp
cout << "Cauchy Setting the packer to 
<< find_location<cauchy>(minimum_weight, 0.99, standard_deviation)
<< " will mean that "
<< "fraction of packs >= " << minimum_weight
<< " is " << cdf(complement(goodcpacks, minimum_weight)) << endl;
```

Setting the packer to 3.13263 will mean that fraction of packs >= 2.9 is 0.99, but will more than double the mean loss from 0.0644 to 0.133 kg per pack.

Of course, this calculation is not limited to packs of meat, it applies to dispensing anything, and it also applies to a 'virtual' material like any measurement.

The only caveat is that the calculation assumes that the standard deviation (scale) is known with a reasonably low uncertainty, something that is not so easy to ensure in practice. And that the distribution is well defined, Normal Distribution or Cauchy Distribution, or some other.

If one is simply dispensing a very large number of packs, then it may be feasible to measure the weight of hundreds or thousands of packs. With a healthy 'degrees of freedom', the confidence intervals for the standard deviation are not too wide, typically about + and - 10% for hundreds of observations.

For other applications, where it is more difficult or expensive to make many observations, the confidence intervals are depressingly wide.

See Confidence Intervals on the standard deviation for a worked example chi_square_std_dev_test.cpp of estimating these intervals.

Changing the scale or standard deviation

Alternatively, we could invest in a better (more precise) packer (or measuring device) with a lower standard deviation, or scale.

This might cost more, but would reduce the amount we have to 'give away' in order to meet the specification.

To estimate how much better (how much smaller standard deviation) it would have to be, we need to get the 5% quantile to be located at the under_weight limit, 2.9

```cpp
double p = 0.05; // wanted p th quantile.
cout << "Quantile of " << p << " = " << quantile(packs, p)
<< ", mean = " << packs.mean() << ", sd = " << packs.standard_deviation() << endl;
```

Quantile of 0.05 = 2.83551, mean = 3, sd = 0.1
With the current packer (mean = 3, sd = 0.1), the 5% quantile is at 2.8551 kg, a little below our target of 2.9 kg. So we know that the standard deviation is going to have to be smaller.

Let's start by guessing that it (now 0.1) needs to be halved, to a standard deviation of 0.05 kg.

normal pack05(mean, 0.05);
cout << "Quantile of " << p << " = " << quantile(pack05, p) << ", mean = " << pack05.mean() << " , sd = " << pack05.standard_deviation() << endl;
// Quantile of 0.05 = 2.91776, mean = 3, sd = 0.05

cout <<"Fraction of packs >= " << minimum_weight << " with a mean of " << mean << " and standard deviation of " << pack05.standard_deviation() << " is " << cdf(complement(pack05, minimum_weight)) << endl;
// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.05 is 0.97725

So 0.05 was quite a good guess, but we are a little over the 2.9 target, so the standard deviation could be a tiny bit more. So we could do some more guessing to get closer, say by increasing standard deviation to 0.06 kg, constructing another new distribution called pack06.

normal pack06(mean, 0.06);
cout << "Quantile of " << p << " = " << quantile(pack06, p) << ", mean = " << pack06.mean() << " , sd = " << pack06.standard_deviation() << endl;
// Quantile of 0.05 = 2.90131, mean = 3, sd = 0.06

cout <<"Fraction of packs >= " << minimum_weight << " with a mean of " << mean << " and standard deviation of " << pack06.standard_deviation() << " is " << cdf(complement(pack06, minimum_weight)) << endl;
// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.06 is 0.95221

Now we are getting really close, but to do the job properly, we might need to use root finding method, for example the tools provided, and used elsewhere, in the Math Toolkit, see Root Finding Without Derivatives.

But in this (normal) distribution case, we can and should be even smarter and make a direct calculation.

Our required limit is minimum_weight = 2.9 kg, often called the random variate \(z \). For a standard normal distribution, then probability \(p = N((minimum_weight - mean) / sd) \).

We want to find the standard deviation that would be required to meet this limit, so that the \(p \) th quantile is located at \(z \) (minimum_weight). In this case, the 0.05 (5%) quantile is at 2.9 kg pack weight, when the mean is 3 kg, ensuring that 0.95 (95%) of packs are above the minimum weight.

Rearranging, we can directly calculate the required standard deviation:

normal N01; // standard normal distribution with mean zero and unit standard deviation.
p = 0.05;
double qp = quantile(N01, p);
double sd95 = (minimum_weight - mean) / qp;
cout << "For the " << p << "th quantile to be located at " << minimum_weight << ", would need a standard deviation of " << sd95 << endl;
// For the 0.05th quantile to be located at 2.9, would need a standard deviation of 0.0607957

We can now construct a new (normal) distribution pack95 for the 'better' packer, and check that our distribution will meet the specification.
normal pack95(mean, sd95);
cout <<"Fraction of packs >= " << minimum_weight << " with a mean of " << mean
<< " and standard deviation of " << pack95.standard_deviation()
<< " is " << cdf(complement(pack95, minimum_weight)) << endl;
// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0607957 is 0.95

This calculation is generalized in the free function find_scale, as shown below, giving the same standard deviation.

double ss = find_scale<normal>(minimum_weight, under_fraction, packs.mean());
cout << "find_scale<normal>(minimum_weight, under_fraction, packs.mean()); " << ss << endl;
// find_scale<normal>(minimum_weight, under_fraction, packs.mean()); 0.0607957

If we had defined an over_fraction, or percentage that must pass specification

double over_fraction = 0.95;

And (wrongly) written

double sso = find_scale<normal>(minimum_weight, over_fraction, packs.mean());

With the default policy, we would get a message like

Message from thrown exception was:
Error in function boost::math::find_scale<Dist, Policy>(double, double, double, Policy):
Computed scale (-0.060795683191176959) is <= 0! Was the complement intended?

But this would return a negative standard deviation - obviously impossible. The probability should be 1 - over_fraction, not over_fraction, thus:

double ss1o = find_scale<normal>(minimum_weight, 1 - over_fraction, packs.mean());
cout << "find_scale<normal>(minimum_weight, under_fraction, packs.mean()); " << ss1o << endl;
// find_scale<normal>(minimum_weight, under_fraction, packs.mean()); 0.0607957

But notice that using '1 - over_fraction' - will lead to a loss of accuracy, especially if over_fraction was close to unity. In this (very common) case, we should instead use the complements, giving the most accurate result.

double ssc = find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean()));
cout << "find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean())); " << ssc << endl;
// find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean())); 0.0607957

Note that our guess of 0.06 was close to the accurate value of 0.060795683191176959.

We can again confirm our prediction thus:

normal pack95c(mean, ssc);
cout <<"Fraction of packs >= " << minimum_weight << " with a mean of " << mean
<< " and standard deviation of " << pack95c.standard_deviation()
<< " is " << cdf(complement(pack95c, minimum_weight)) << endl;
// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0607957 is 0.95

Notice that these two deceptively simple questions:

• Do we over-fill to make sure we meet a minimum specification (or under-fill to avoid an overdose)?
and/or

- Do we measure better?

are actually extremely common.

The weight of beef might be replaced by a measurement of more or less anything, from drug tablet content, Apollo landing rocket firing, X-ray treatment doses...

The scale can be variation in dispensing or uncertainty in measurement. See find_mean_and_sd_normal.cpp for full source code & appended program output.

Comparison with C, R, FORTRAN-style Free Functions

You are probably familiar with a statistics library that has free functions, for example the classic NAG C library and matching NAG FORTRAN Library, Microsoft Excel BINOMDIST(number_s, trials, probability_s, cumulative), R, MathCAD pbinom and many others.

If so, you may find 'Distributions as Objects' unfamiliar, if not alien.

However, do not panic, both definition and usage are not really very different.

A very simple example of generating the same values as the NAG C library for the binomial distribution follows. (If you find slightly different values, the Boost C++ version, using double or better, is very likely to be the more accurate. Of course, accuracy is not usually a concern for most applications of this function).

The NAG function specification is

```c
void nag_binomial_dist(Integer n, double p, Integer k, double *plek, double *pgtk, double *peqk, NagError *fail)
```

and is called

```c
g01bjc(n, p, k, &plek, &pgtk, &peqk, NAGERR_DEFAULT);
```

The equivalent using this Boost C++ library is:

```c
using namespace boost::math; // Using declaration avoids very long names.
binomial my_dist(4, 0.5); // c.f. NAG n = 4, p = 0.5
```

and values can be output thus:

```c
cout
<< my_dist.trials() << " " // Echo the NAG input n = 4 trials.
<< my_dist.success_fraction() << " " // Echo the NAG input p = 0.5
<< cdf(my_dist, 2) << " " // NAG plek with k = 2
<< cdf(complement(my_dist, 2)) << " " // NAG pgtk with k = 2
<< pdf(my_dist, 2) << endl; // NAG peqk with k = 2
```

cdf(dist, k) is equivalent to NAG library plek, lower tail probability of <= k

cdf(complement(dist, k)) is equivalent to NAG library pgtk, upper tail probability of > k

pdf(dist, k) is equivalent to NAG library peqk, point probability of == k

See binomial_example_nag.cpp for details.
Using the Distributions from Within C#

The distributions in this library can be used from the C# programming language when they are built using Microsoft’s Common Language Runtime option.

An example of this kind of usage is given in the distribution_explorer example: see boost-root/libs/math/dot_net_example for the source code: the application consists of a C++ dll that contains the actual distributions, and a C# GUI that allows you to explore their properties.

Random Variates and Distribution Parameters

Random variates and distribution parameters are conventionally distinguished (for example in Wikipedia and Wolfram MathWorld by placing a semi-colon after the random variate (whose value you ‘choose’), to separate the variate from the parameter(s) that defines the shape of the distribution.

For example, the binomial distribution has two parameters: n (the number of trials) and p (the probability of success on one trial). It also has the random variate k: the number of successes observed. This means the probability density/mass function (pdf) is written as f(k; n, p).

Translating this into code the binomial_distribution constructor therefore has two parameters:

```csharp
binomial_distribution<RealType>(RealType n, RealType p);
```

While the function pdf has one argument specifying the distribution type (which includes it’s parameters, if any), and a second argument for the random variate. So taking our binomial distribution example, we would write:

```csharp
pdf(binomial_distribution<RealType>(n, p), k);
```

Discrete Probability Distributions

Note that the discrete distributions, including the binomial, negative binomial, Poisson & Bernoulli, are all mathematically defined as discrete functions: only integral values of the random variate are envisaged and the functions are only defined at these integral values. However because the method of calculation often uses continuous functions, it is convenient to treat them as if they were continuous functions, and permit non-integral values of their parameters.

To enforce a strict mathematical model, users may use floor or ceil functions on the random variate, prior to calling the distribution function, to enforce integral values.

For similar reasons, in continuous distributions, parameters like degrees of freedom that might appear to be integral, are treated as real values (and are promoted from integer to floating-point if necessary). In this case however, that there are a small number of situations where non-integral degrees of freedom do have a genuine meaning.

Generally speaking there is no loss of performance from allowing real-values parameters: the underlying special functions contain optimizations for integer-valued arguments when applicable.
Caution

The quantile function of a discrete distribution will by default return an integer result that has been rounded outwards. That is to say lower quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles (where the probability is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least the requested coverage will be present in the central region, and no more than the requested coverage will be present in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete Distributions before using the quantile function on a discrete distribution. The reference docs describe how to change the rounding policy for these distributions.

Statistical Distributions Reference

Non-Member Properties

Properties that are common to all distributions are accessed via non-member getter functions. This allows more of these functions to be added over time as the need arises. Unfortunately the literature uses many different and confusing names to refer to a rather small number of actual concepts; refer to the concept index to find the property you want by the name you are most familiar with. Or use the function index to go straight to the function you want if you already know its name.

Function Index

- cdf.
- cdf complement.
- chf.
- hazard.
- kurtosis.
- kurtosis_excess
- mean.
- median.
- mode.
- pdf.
- range.
- quantile.
- quantile from the complement.
- skewness.
- standard_deviation.
- support.
- variance.
Conceptual Index

- Complement of the Cumulative Distribution Function.
- Cumulative Distribution Function.
- Cumulative Hazard Function.
- Inverse Cumulative Distribution Function.
- Inverse Survival Function.
- Hazard Function
- Lower Critical Value.
- kurtosis.
- kurtosis_excess
- mean.
- median.
- mode.
- P.
- Percent Point Function.
- Probability Density Function.
- Probability Mass Function.
- range.
- Q.
- Quantile.
- Quantile from the complement of the probability.
- skewness.
- standard deviation
- Survival Function.
- support.
- Upper Critical Value.
- variance.

Cumulative Distribution Function

template <class RealType, class Policy>
RealType cdf(const Distribution-Type<RealType, Policy>& dist, const RealType& x);

The Cumulative Distribution Function is the probability that the variable takes a value less than or equal to x. It is equivalent to the integral from -infinity to x of the Probability Density Function.
This function may return a domain_error if the random variable is outside the defined range for the distribution.

For example the following graph shows the cdf for the normal distribution:

![CDF for the Normal Distribution](image)

Complement of the Cumulative Distribution Function

```cpp
template <class Distribution, class RealType>
RealType cdf(const Unspecified-Complement-Type<Distribution, RealType>& comp);
```

The complement of the Cumulative Distribution Function is the probability that the variable takes a value greater than x. It is equivalent to the integral from x to infinity of the Probability Density Function, or 1 minus the Cumulative Distribution Function of x.

This is also known as the survival function.

This function may return a domain_error if the random variable is outside the defined range for the distribution.

In this library, it is obtained by wrapping the arguments to the cdf function in a call to complement, for example:

```cpp
// standard normal distribution object:
boost::math::normal norm;
// print survival function for x=2.0:
std::cout << cdf(complement(norm, 2.0)) << std::endl;
```

For example the following graph shows the complement of the cdf for the normal distribution:
Hazard Function

\[
\text{hazard}(x) = h(x) = \frac{pdf(x)}{1 - cdf(x)}
\]

\textbf{Caution}

Some authors refer to this as the conditional failure density function rather than the hazard function.

Cumulative Hazard Function

\[
\text{chf}(dist, x) = H(x) = \int_{-\infty}^{x} h(\mu) \, d\mu
\]

See \textit{why complements?} for why the complement is useful and when it should be used.
Caution

Some authors refer to this as simply the "Hazard Function".

mean

```cpp
template<class RealType, class Policy>
RealType mean(const Distribution-Type<RealType, Policy>& dist);
```

Returns the mean of the distribution `dist`.

This function may return a `domain_error` if the distribution does not have a defined mean (for example the Cauchy distribution).

median

```cpp
template<class RealType, class Policy>
RealType median(const Distribution-Type<RealType, Policy>& dist);
```

Returns the median of the distribution `dist`.

mode

```cpp
template<class RealType, Policy>
RealType mode(const Distribution-Type<RealType, Policy>& dist);
```

Returns the mode of the distribution `dist`.

This function may return a `domain_error` if the distribution does not have a defined mode.

Probability Density Function

```cpp
template <class RealType, class Policy>
RealType pdf(const Distribution-Type<RealType, Policy>& dist, const RealType& x);
```

For a continuous function, the probability density function (pdf) returns the probability that the variate has the value `x`. Since for continuous distributions the probability at a single point is actually zero, the probability is better expressed as the integral of the pdf between two points: see the Cumulative Distribution Function.

For a discrete distribution, the pdf is the probability that the variate takes the value `x`.

This function may return a `domain_error` if the random variable is outside the defined range for the distribution.

For example for a standard normal distribution the pdf looks like this:
range

\[
\text{template} <\text{class RealType, class Policy}> \\
\text{std::pair<RealType, RealType> range(const Distribution-Type<RealType, Policy>& dist);} \\
\]

Returns the valid range of the random variable over distribution \(\text{dist}\).

Quantile

\[
\text{template <class RealType, class Policy> } \\
\text{RealType quantile(const Distribution-Type<RealType, Policy>& dist, const RealType& p);} \\
\]

The quantile is best viewed as the inverse of the Cumulative Distribution Function, it returns a value \(x\) such that \(\text{cdf}(\text{dist}, x) = p\).

This is also known as the percent point function, or a percentile, it is also the same as calculating the lower critical value of a distribution.

This function returns a domain_error if the probability lies outside \([0,1]\). The function may return an overflow_error if there is no finite value that has the specified probability.

The following graph shows the quantile function for a standard normal distribution:
Quantile from the complement of the probability.

complements

```cpp
template <class Distribution, class RealType>
RealType quantile(const Unspecified-Complement-Type<Distribution, RealType>& comp);
```

This is the inverse of the Complement of the Cumulative Distribution Function. It is calculated by wrapping the arguments in a call to the quantile function in a call to `complement`. For example:

```cpp
// define a standard normal distribution:
boost::math::normal norm;
// print the value of x for which the complement
// of the probability is 0.05:
std::cout << quantile(complement(norm, 0.05)) << std::endl;
```

The function computes a value \(x \) such that \(\text{cdf}(\text{complement}(\text{dist, } x)) = q \) where \(q \) is complement of the probability.

Why complements?

This function is also called the inverse survival function, and is the same as calculating the upper critical value of a distribution.

This function returns a `domain_error` if the probability lies outside [0,1]. The function may return an `overflow_error` if there is no finite value that has the specified probability.

The following graph show the inverse survival function for the normal distribution:
Standard Deviation

```cpp
template <class RealType, class Policy>
RealType standard_deviation(const Distribution_Type<RealType, Policy>& dist);
```

Returns the standard deviation of distribution `dist`.

This function may return a `domain_error` if the distribution does not have a defined standard deviation.

support

```cpp
template<class RealType, class Policy>
std::pair<RealType, RealType> support(const Distribution_Type<RealType, Policy>& dist);
```

Returns the supported range of random variable over the distribution `dist`.

The distribution is said to be 'supported' over a range that is "the smallest closed set whose complement has probability zero". Non-mathematicians might say it means the 'interesting' smallest range of random variate `x` that has the cdf going from zero to unity. Outside are uninteresting zones where the pdf is zero, and the cdf zero or unity.

Variance

```cpp
template <class RealType, class Policy>
RealType variance(const Distribution_Type<RealType, Policy>& dist);
```

Returns the variance of the distribution `dist`.

This function may return a `domain_error` if the distribution does not have a defined variance.
Skewness

```cpp
template <class RealType, class Policy>
RealType skewness(const Distribution<Type<RealType, Policy>>& dist);
```

Returns the skewness of the distribution `dist`.

This function may return a `domain_error` if the distribution does not have a defined skewness.

Kurtosis

```cpp
template <class RealType, class Policy>
RealType kurtosis(const Distribution<Type<RealType, Policy>>& dist);
```

Returns the 'proper' kurtosis (normalized fourth moment) of the distribution `dist`.

\[
\beta_2 = \frac{\mu_4}{\mu_2^2}
\]

Where \(\mu_i \) is the \(i \)th central moment of the distribution, and in particular \(\mu_2 \) is the variance of the distribution.

The kurtosis is a measure of the "peakedness" of a distribution.

Note that the literature definition of kurtosis is confusing. The definition used here is that used by for example Wolfram MathWorld (that includes a table of formulae for kurtosis excess for various distributions) but NOT the definition of kurtosis used by Wikipedia which treats "kurtosis" and "kurtosis excess" as the same quantity.

\[
kurtosis_{\text{excess}} = \text{'proper' kurtosis} - 3
\]

This subtraction of 3 is convenient so that the kurtosis excess of a normal distribution is zero.

This function may return a `domain_error` if the distribution does not have a defined kurtosis excess.

'Proper' kurtosis can have a value from zero to + infinity.

Kurtosis excess

```cpp
template <class RealType, Policy>
RealType kurtosis_excess(const Distribution<Type<RealType, Policy>>& dist);
```

Returns the kurtosis excess of the distribution `dist`.

\[
kurtosis_{\text{excess}} = \gamma_2 = \frac{\mu_4}{\mu_2^2} - 3 = \text{kurtosis} - 3
\]

Where \(\mu_i \) is the \(i \)th central moment of the distribution, and in particular \(\mu_2 \) is the variance of the distribution.

The kurtosis excess is a measure of the "peakedness" of a distribution, and is more widely used than the "kurtosis proper". It is defined so that the kurtosis excess of a normal distribution is zero.

This function may return a `domain_error` if the distribution does not have a defined kurtosis excess.

Kurtosis excess can have a value from -2 to + infinity.

\[
kurtosis = kurtosis_{\text{excess}} + 3;
\]

The kurtosis excess of a normal distribution is zero.
P and Q

The terms P and Q are sometimes used to refer to the Cumulative Distribution Function and its complement respectively. Lowercase p and q are sometimes used to refer to the values returned by these functions.

Percent Point Function

The percent point function, also known as the percentile, is the same as the Quantile.

Inverse CDF Function.

The inverse of the cumulative distribution function, is the same as the Quantile.

Inverse Survival Function.

The inverse of the survival function, is the same as computing the quantile from the complement of the probability.

Probability Mass Function

The Probability Mass Function is the same as the Probability Density Function.

The term Mass Function is usually applied to discrete distributions, while the term Probability Density Function applies to continuous distributions.

Lower Critical Value.

The lower critical value calculates the value of the random variable given the area under the left tail of the distribution. It is equivalent to calculating the Quantile.

Upper Critical Value.

The upper critical value calculates the value of the random variable given the area under the right tail of the distribution. It is equivalent to calculating the quantile from the complement of the probability.

Survival Function

Refer to the Complement of the Cumulative Distribution Function.

Distributions

Bernoulli Distribution

```
#include <boost/math/distributions/bernoulli.hpp>
```
The Bernoulli distribution is a discrete distribution of the outcome of a single trial with only two results, 0 (failure) or 1 (success), with a probability of success p.

The Bernoulli distribution is the simplest building block on which other discrete distributions of sequences of independent Bernoulli trials can be based.

The Bernoulli is the binomial distribution \((k = 1, p)\) with only one trial.

Probability density function PDF \(f(0) = 1 - p, f(1) = p\). **Cumulative distribution function** \(D(k) = \begin{cases} 1 - p & \text{if } k = 0 \\ 1 & \text{otherwise} \end{cases}\).

The following graph illustrates how the **probability density function** PDF varies with the outcome of the single trial:

![Bernoulli Distribution PDF](image)

and the **Cumulative distribution function**
Member Functions

```cpp
class bernoulli_distribution(RealType p);
```

Constructs a `bernoulli distribution` with success_fraction `p`.

```cpp
RealType success_fraction() const
```

Returns the `success_fraction` parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is 0 and 1, and the useful supported range is only 0 or 1. Outside this range, functions are undefined, or may throw domain_error exception and make an error message available.

Accuracy

The Bernoulli distribution is implemented with simple arithmetic operators and so should have errors within an epsilon or two.

Implementation

In the following table `p` is the probability of success and `q = 1 - p`. `k` is the random variate, either 0 or 1.

Note

The Bernoulli distribution is implemented here as a `strict discrete` distribution. If a generalised version, allowing `k` to be any real, is required then the binomial distribution with a single trial should be used, for example:

```cpp
binomial_distribution(1, 0.25)
```
<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported range</td>
<td>{0, 1}</td>
</tr>
<tr>
<td>pdf</td>
<td>Using the relation: pdf = 1 - p for k = 0, else p</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: cdf = 1 - p for k = 0, else 1</td>
</tr>
<tr>
<td>cdf complement</td>
<td>q = 1 - p</td>
</tr>
<tr>
<td>quantile</td>
<td>if x <= (1-p) 0 else 1</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>if x <= (1-p) 1 else 0</td>
</tr>
<tr>
<td>mean</td>
<td>p</td>
</tr>
<tr>
<td>variance</td>
<td>p * (1 - p)</td>
</tr>
<tr>
<td>mode</td>
<td>if (p < 0.5) 0 else 1</td>
</tr>
<tr>
<td>skewness</td>
<td>(1 - 2 * p) / sqrt(p * q)</td>
</tr>
<tr>
<td>kurtosis</td>
<td>6 * p * p - 6 * p + 1/p * q</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>kurtosis -3</td>
</tr>
</tbody>
</table>

References

- Wikipedia Bernoulli distribution

Beta Distribution

```cpp
#include <boost/math/distributions/beta.hpp>
```
The class type \texttt{beta_distribution} represents a \texttt{beta} probability distribution function.

The \texttt{beta distribution} is used as a prior distribution for binomial proportions in Bayesian analysis.

See also: \texttt{beta distribution} and \texttt{Bayesian statistics}.

How the beta distribution is used for Bayesian analysis of one parameter models is discussed by Jeff Grynaviski.

The probability density function PDF for the \texttt{beta distribution} defined on the interval \([0,1]\) is given by:

\[f(x;\alpha,\beta) = x^{\alpha-1} (1 - x)^{\beta-1} / B(\alpha, \beta) \]

where \(B(\alpha, \beta)\) is the \texttt{beta function}, implemented in this library as \texttt{beta}. Division by the beta function ensures that the pdf is normalized to the range zero to unity.
The following graph illustrates examples of the pdf for various values of the shape parameters. Note the \(\alpha = \beta = 2 \) (blue line) is dome-shaped, and might be approximated by a symmetrical triangular distribution.

![Beta Distribution PDF]

If \(\alpha = \beta = 1 \), then it is a uniform distribution, equal to unity in the entire interval \(x = 0 \) to \(1 \). If \(\alpha \) and \(\beta \) are < 1, then the pdf is U-shaped. If \(\alpha \neq \beta \), then the shape is asymmetric and could be approximated by a triangle whose apex is away from the centre (where \(x = \text{half} \)).

Member Functions

Constructor

\[
\text{beta_distribution}(\text{RealType } \alpha, \text{RealType } \beta);
\]

Constructs a beta distribution with shape parameters \(\alpha \) and \(\beta \).

Requires \(\alpha, \beta > 0 \), otherwise domain_error is called. Note that technically the beta distribution is defined for \(\alpha, \beta \geq 0 \), but it's not clear whether any program can actually make use of that latitude or how many of the non-member functions can be usefully defined in that case. Therefore for now, we regard it as an error if \(\alpha \) or \(\beta \) is zero.

For example:

\[
\text{beta_distribution}<> \text{mybeta}(2, 5);
\]

Constructs a the beta distribution with \(\alpha = 2 \) and \(\beta = 5 \) (shown in yellow in the graph above).

Parameter Accessors

\[
\text{RealType } \alpha() \text{ const};
\]

Returns the parameter \(\alpha \) from which this distribution was constructed.

\[
\text{RealType } \beta() \text{ const};
\]

Returns the parameter \(\beta \) from which this distribution was constructed.
So for example:

```cpp
beta_distribution<> mybeta(2, 5);
assert(mybeta.alpha() == 2.); // mybeta.alpha() returns 2
assert(mybeta.beta() == 5.); // mybeta.beta() returns 5
```

Parameter Estimators

Two pairs of parameter estimators are provided.

One estimates either α or β from presumed-known mean and variance.

The other pair estimates either α or β from the cdf and x.

It is also possible to estimate α and β from 'known' mode & quantile. For example, calculators are provided by the Pooled Prevalence Calculator and Beta Buster but this is not yet implemented here.

```cpp
static RealType find_alpha(
    RealType mean, // Expected value of mean.
    RealType variance); // Expected value of variance.
```

Returns the unique value of α that corresponds to a beta distribution with mean $mean$ and variance $variance$.

```cpp
static RealType find_beta(
    RealType mean, // Expected value of mean.
    RealType variance); // Expected value of variance.
```

Returns the unique value of β that corresponds to a beta distribution with mean $mean$ and variance $variance$.

```cpp
static RealType find_alpha(
    RealType beta, // from beta.
    RealType x, // x.
    RealType probability); // probability cdf
```

Returns the value of α that gives: $\text{cdf(beta_distribution<RealType>(alpha, beta), x)} == \text{probability}$.

```cpp
static RealType find_beta(
    RealType alpha, // alpha.
    RealType x, // probability x.
    RealType probability); // probability cdf.
```

Returns the value of β that gives: $\text{cdf(beta_distribution<RealType>(alpha, beta), x)} == \text{probability}$.

Non-member Accessor Functions

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The formulae for calculating these are shown in the table below, and at Wolfram Mathworld.

Applications

The beta distribution can be used to model events constrained to take place within an interval defined by a minimum and maximum value: so it is used in project management systems.

It is also widely used in Bayesian statistical inference.
Related distributions

The beta distribution with both \(\alpha \) and \(\beta = 1 \) follows a **uniform distribution**.

The **triangular** is used when less precise information is available.

The **binomial distribution** is closely related when \(\alpha \) and \(\beta \) are integers.

With integer values of \(\alpha \) and \(\beta \) the distribution \(B(i, j) \) is that of the \(j \)-th highest of a sample of \(i + j + 1 \) independent random variables uniformly distributed between 0 and 1. The cumulative probability from 0 to \(x \) is thus the probability that the \(j \)-th highest value is less than \(x \). Or it is the probability that that at least \(i \) of the random variables are less than \(x \), a probability given by summing over the **Binomial Distribution** with its p parameter set to \(x \).

Accuracy

This distribution is implemented using the **beta functions beta** and **incomplete beta functions ibeta** and **ibetac**; please refer to these functions for information on accuracy.

Implementation

In the following table \(a \) and \(b \) are the parameters \(\alpha \) and \(\beta \), \(x \) is the random variable, \(p \) is the probability and \(q = 1-p \).
<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>$f(x; \alpha, \beta) = x^{\alpha-1} (1 - x)^{\beta-1} / B(\alpha, \beta)$</td>
</tr>
<tr>
<td>Implemented using <code>ibeta_derivative</code>(a, b, x).</td>
<td></td>
</tr>
<tr>
<td>cdf</td>
<td>Using the incomplete beta function <code>ibeta</code>(a, b, x)</td>
</tr>
<tr>
<td>cdf complement</td>
<td><code>ibetac</code>(a, b, x)</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the inverse incomplete beta function <code>ibeta_inv</code>(a, b, p)</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td><code>ibetac_inv</code>(a, b, q)</td>
</tr>
<tr>
<td>mean</td>
<td>$a / (a+b)$</td>
</tr>
<tr>
<td>variance</td>
<td>$a * b / (a+b)^2 * (a + b + 1)$</td>
</tr>
<tr>
<td>mode</td>
<td>$(a-1) / (a + b - 2)$</td>
</tr>
<tr>
<td>skewness</td>
<td>$2(b-a) * sqrt(a+b+1)/(a+b+2) * sqrt(a * b)$</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>$\frac{6 \alpha^3 - \alpha^2(2\beta - 1) + \beta^2(\beta - 1) - 2\alpha \beta(\beta + 2)}{\alpha \beta(\alpha + \beta + 2)(\alpha + \beta + 3)}$</td>
</tr>
<tr>
<td>kurtosis</td>
<td>kurtosis + 3</td>
</tr>
<tr>
<td>parameter estimation</td>
<td></td>
</tr>
<tr>
<td>alpha</td>
<td>$\text{mean} * (\text{mean} * (1 - \text{mean}) / \text{variance}- 1)$</td>
</tr>
<tr>
<td>from mean and variance</td>
<td></td>
</tr>
<tr>
<td>beta</td>
<td>$(1 - \text{mean}) * (\text{mean} * (1 - \text{mean}) / \text{variance}-1)$</td>
</tr>
<tr>
<td>from mean and variance</td>
<td></td>
</tr>
<tr>
<td>The member functions <code>find_alpha</code> and <code>find_beta</code> from cdf and probability x and either alpha or beta</td>
<td>Implemented in terms of the inverse incomplete beta functions <code>ibeta_inva</code>, and <code>ibeta_invb</code> respectively.</td>
</tr>
<tr>
<td><code>find_alpha</code></td>
<td><code>ibeta_inva</code>(beta, x, probability)</td>
</tr>
<tr>
<td><code>find_beta</code></td>
<td><code>ibeta_invb</code>(alpha, x, probability)</td>
</tr>
</tbody>
</table>

References

- Wikipedia Beta distribution
- NIST Exploratory Data Analysis
- Wolfram MathWorld
The class type `binomial_distribution` represents a binomial distribution: it is used when there are exactly two mutually exclusive outcomes of a trial. These outcomes are labelled “success” and “failure”. The `binomial_distribution` is used to obtain the probability of observing k successes in N trials, with the probability of success on a single trial denoted by p. The binomial distribution assumes that p is fixed for all trials.
Note

The random variable for the binomial distribution is the number of successes, (the number of trials is a fixed property of the distribution) whereas for the negative binomial, the random variable is the number of trials, for a fixed number of successes.

The following two graphs illustrate how the PDF changes depending upon the distributions parameters, first we’ll keep the success fraction p fixed at 0.5, and vary the sample size:

![Binomial Distribution PDF](image)

Alternatively, we can keep the sample size fixed at $N=20$ and vary the success fraction p:

PDF

$$f(k; n, p) = \binom{n}{k} p^k (1 - p)^{n-k}$$

The PDF for the binomial distribution is given by:

$$f(k; n, p) = \binom{n}{k} p^k (1 - p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1 - p)^{n-k}$$
Caution

The Binomial distribution is a discrete distribution: internally functions like the \texttt{cdf} and \texttt{pdf} are treated "as if" they are continuous functions, but in reality the results returned from these functions only have meaning if an integer value is provided for the random variate argument.

The quantile function will by default return an integer result that has been \emph{rounded outwards}. That is to say lower quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles (where the probability is greater than 0.5) are rounded upwards. This behaviour ensures that if an \texttt{X}\% quantile is requested, then \emph{at least} the requested coverage will be present in the central region, and \emph{no more than} the requested coverage will be present in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued result using Policies. It is strongly recommended that you read the tutorial \texttt{Understanding Quantiles of Discrete Distributions} before using the quantile function on the Binomial distribution. The \texttt{reference docs} describe how to change the rounding policy for these distributions.

Member Functions

Construct

\texttt{binomial_distribution(RealType n, RealType p);}

Constructor: \(n \) is the total number of trials, \(p \) is the probability of success of a single trial.

Requires \(0 \leq p \leq 1 \), and \(n \geq 0 \), otherwise calls \texttt{domain_error}.

Accessors

\texttt{RealType success_fraction() const;}

Returns the parameter \(p \) from which this distribution was constructed.
RealType trials() const;

Returns the parameter n from which this distribution was constructed.

Lower Bound on the Success Fraction

```cpp
static RealType find_lower_bound_on_p(
    RealType trials,
    RealType successes,
    RealType alpha,
    unspecified-type method = clopper_pearson_exact_interval);
```

Returns a lower bound on the success fraction:

- **trials** The total number of trials conducted.
- **successes** The number of successes that occurred.
- **alpha** The largest acceptable probability that the true value of the success fraction is **less than** the value returned.
- **method** An optional parameter that specifies the method to be used to compute the interval (See below).

For example, if you observe k successes from n trials the best estimate for the success fraction is simply k/n, but if you want to be 95% sure that the true value is **greater than** some value, p_{min}, then:

```cpp
p_{min} = \text{binomial_distribution<RealType>::find_lower_bound_on_p}(
    n, k, 0.05);
```

See worked example.

There are currently two possible values available for the **method** optional parameter: clopper_pearson_exact_interval or jeffreys_prior_interval. These constants are both members of class template `binomial_distribution`, so usage is for example:

```cpp
p = \text{binomial_distribution<RealType>::find_lower_bound_on_p}(
    n, k, 0.05, \text{binomial_distribution<RealType>::jeffreys_prior_interval});
```

The default method if this parameter is not specified is the Clopper Pearson "exact" interval. This produces an interval that guarantees at least $100(1-\alpha)$% coverage, but which is known to be overly conservative, sometimes producing intervals with much greater than the requested coverage.

The alternative calculation method produces a non-informative Jeffreys Prior interval. It produces $100(1-\alpha)$% coverage only *in the average case*, though is typically very close to the requested coverage level. It is one of the main methods of calculation recommended in the review by Brown, Cai and DasGupta.

Please note that the "textbook" calculation method using a normal approximation (the Wald interval) is deliberately not provided: it is known to produce consistently poor results, even when the sample size is surprisingly large. Refer to Brown, Cai and DasGupta for a full explanation. Many other methods of calculation are available, and may be more appropriate for specific situations. Unfortunately there appears to be no consensus amongst statisticians as to which is "best": refer to the discussion at the end of Brown, Cai and DasGupta for examples.

The two methods provided here were chosen principally because they can be used for both one and two sided intervals. See also:

Upper Bound on the Success Fraction

```cpp
static RealType find_upper_bound_on_p(
    RealType trials,
    RealType successes,
    RealType alpha,
    unspecified-type method = clopper_pearson_exact_interval);
```

Returns an upper bound on the success fraction:

- **trials** The total number of trials conducted.
- **successes** The number of successes that occurred.
- **alpha** The largest acceptable probability that the true value of the success fraction is greater than the value returned.
- **method** An optional parameter that specifies the method to be used to compute the interval. Refer to the documentation for find_upper_bound_on_p above for the meaning of the method options.

For example, if you observe \(k \) successes from \(n \) trials the best estimate for the success fraction is simply \(k/n \), but if you want to be 95% sure that the true value is less than some value, \(p_{\text{max}} \), then:

\[
p_{\text{max}} = \text{binomialdistribution}<\text{RealType}>::\text{find_upper_bound_on_p}(
 n, k, 0.05);
\]

See worked example.

Note

In order to obtain a two sided bound on the success fraction, you call both find_lower_bound_on_p and find_upper_bound_on_p each with the same arguments.

If the desired risk level that the true success fraction lies outside the bounds is \(\alpha \), then you pass \(\alpha/2 \) to these functions.

So for example a two sided 95% confidence interval would be obtained by passing \(\alpha = 0.025 \) to each of the functions.

See worked example.

Estimating the Number of Trials Required for a Certain Number of Successes

```cpp
static RealType find_minimum_number_of_trials(
    RealType k, // number of events
    RealType p, // success fraction
    RealType alpha); // probability threshold
```

This function estimates the minimum number of trials required to ensure that more than \(k \) events is observed with a level of risk \(\alpha \) that \(k \) or fewer events occur.

- **k** The number of successes observed.
- **p** The probability of success for each trial.
alpha The maximum acceptable probability that k events or fewer will be observed.

For example:

```cpp
typedef Binomial_distribution<RealType>::find_number_of_trials(10, 0.5, 0.05);
```

Returns the smallest number of trials we must conduct to be 95% sure of seeing 10 events that occur with frequency one half.

Estimating the Maximum Number of Trials to Ensure no more than a Certain Number of Successes

```cpp
static RealType find_maximum_number_of_trials(
    RealType k, // number of events
    RealType p, // success fraction
    RealType alpha); // probability threshold
```

This function estimates the maximum number of trials we can conduct to ensure that k successes or fewer are observed, with a risk alpha that more than k occur.

k The number of success observed.

p The probability of success for each trial.

alpha The maximum acceptable probability that more than k events will be observed.

For example:

```cpp
typedef Binomial_distribution<RealType>::find_maximum_number_of_trials(0, 1e-6, 0.05);
```

Returns the largest number of trials we can conduct and still be 95% certain of not observing any events that occur with one in a million frequency. This is typically used in failure analysis.

See Worked Example.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain for the random variable k is 0 <= k <= N, otherwise a domain_error is returned.

It's worth taking a moment to define what these accessors actually mean in the context of this distribution:
Table 11. Meaning of the non-member accessors

<table>
<thead>
<tr>
<th>Function</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability Density Function</td>
<td>The probability of obtaining exactly k successes from n trials with success fraction p. For example:enschulte pdf(\text{binomial}(n, p), k)</td>
</tr>
<tr>
<td>Cumulative Distribution Function</td>
<td>The probability of obtaining k successes or fewer from n trials with success fraction p. For example:enschulte cdf(\text{binomial}(n, p), k)</td>
</tr>
<tr>
<td>Complement of the Cumulative Distribution Function</td>
<td>The probability of obtaining more than k successes from n trials with success fraction p. For example:enschulte cdf(complement(\text{binomial}(n, p), k))</td>
</tr>
<tr>
<td>Quantile</td>
<td>The greatest number of successes that may be observed from n trials with success fraction p, at probability P. Note that the value returned is a real-number, and not an integer. Depending on the use case you may want to take either the floor or ceiling of the result. For example:enschulte quantile(\text{binomial}(n, p), P)</td>
</tr>
<tr>
<td>Quantile from the complement of the probability</td>
<td>The smallest number of successes that may be observed from n trials with success fraction p, at probability P. Note that the value returned is a real-number, and not an integer. Depending on the use case you may want to take either the floor or ceiling of the result. For example:enschulte quantile(complement(\text{binomial}(n, p), P))</td>
</tr>
</tbody>
</table>

Examples

Various worked examples are available illustrating the use of the binomial distribution.

Accuracy

This distribution is implemented using the incomplete beta functions \texttt{ibeta} and \texttt{ibetac}, please refer to these functions for information on accuracy.

Implementation

In the following table p is the probability that one trial will be successful (the success fraction), n is the number of trials, k is the number of successes, p is the probability and $q = 1-p$.
Implementation Notes

Function	Implementation Notes
pdf | Implementation is in terms of `ibeta_derivative`: if \(nC_k \) is the binomial coefficient of \(a \) and \(b \), then we have:

\[
\begin{align*}
f(k, n, p) &= nC_k p^k (1 - p)^{n-k} \\
&= \frac{n!}{k!(n-k)!} p^k (1 - p)^{n-k} \\
&= \frac{\Gamma(n+1)}{\Gamma(k+1)\Gamma(n-k+1)} p^k (1 - p)^{n-k} \\
&= \frac{p^k (1 - p)^{n-k}}{B(k+1, n-k+1)(n+1)}
\end{align*}
\]

Which can be evaluated as `ibeta_derivative(k+1, n-k+1, p) / (n+1)`

The function `ibeta_derivative` is used here, since it has already been optimised for the lowest possible error - indeed this is really just a thin wrapper around part of the internals of the incomplete beta function.

There are also various special cases: refer to the code for details.

cdf | Using the relation:

\[
p = I_{1-p}(n - k, k + 1) \\
= 1 - I_p(k + 1, n - k)
\]

\[= \text{ibetac}(k + 1, n - k, p)\]

There are also various special cases: refer to the code for details.

cdf complement | Using the relation: \(q = \text{ibeta}(k + 1, n - k, p) \)

There are also various special cases: refer to the code for details.

quantile | Since the cdf is non-linear in variate \(k \) none of the inverse incomplete beta functions can be used here. Instead the quantile is found numerically using a derivative free method (TOMS Algorithm 748).

quantile from the complement | Found numerically as above.

mean | \(p \times n \)

variance | \(p \times n \times (1-p) \)

mode | \(\text{floor}(p \times (n + 1)) \)

skewness | \(\frac{(1 - 2 \times p)}{\sqrt{n \times p \times (1 - p)}} \)

kurtosis | \(3 - \frac{6}{n} + \frac{1}{n \times p \times (1 - p)} \)

kurtosis excess | \(\frac{(1 - 6 \times p \times q)}{(n \times p \times q)} \)

parameter estimation | The member functions `find_upper_bound_on_p`, `find_lower_bound_on_p`, and `find_number_of_trials` are implemented in terms of the inverse incomplete beta functions `ibetac_inv`, `ibeta_inv`, and `ibetac_invb` respectively.
The Cauchy-Lorentz distribution is named after Augustin Cauchy and Hendrik Lorentz. It is a continuous probability distribution with probability distribution function PDF given by:

\[f(x; x_0, \gamma) = \frac{1}{\pi} \frac{\gamma}{(x - x_0)^2 + \gamma^2} \]

The location parameter \(x_0\) is the location of the peak of the distribution (the mode of the distribution), while the scale parameter \(\gamma\) specifies half the width of the PDF at half the maximum height. If the location is zero, and the scale 1, then the result is a standard Cauchy distribution.

The distribution is important in physics as it is the solution to the differential equation describing forced resonance, while in spectroscopy it is the description of the line shape of spectral lines.

The following graph shows how the distributions moves as the location parameter changes:
While the following graph shows how the shape (scale) parameter alters the distribution:

Member Functions

cauchy_distribution(RealType location = 0, RealType scale = 1);

Constructs a Cauchy distribution, with location parameter \(\text{location} \) and scale parameter \(\text{scale} \). When these parameters take their default values (location = 0, scale = 1) then the result is a Standard Cauchy Distribution.

Requires scale > 0, otherwise calls domain_error.

RealType location() const;

Returns the location parameter of the distribution.
RealType scale() const;

Returns the scale parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

Note however that the Cauchy distribution does not have a mean, standard deviation, etc. See mathematically undefined function to control whether these should fail to compile with a BOOST_STATIC_ASSERTION_FAILURE, which is the default.

Alternately, the functions mean, standard deviation, variance, skewness, kurtosis and kurtosis_excess will all return a domain_error if called.

The domain of the random variable is [-[max_value], +[min_value]].

Accuracy

The Cauchy distribution is implemented in terms of the standard library tan and atan functions, and as such should have very low error rates.

Implementation

In the following table x_0 is the location parameter of the distribution, γ is its scale parameter, x is the random variate, p is the probability and $q = 1-p$.
Function
<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: $pdf = \frac{1}{\pi \gamma (1 + \frac{(x - x_0)^2}{\gamma^2})}$</td>
</tr>
</tbody>
</table>
| cdf and its complement | The cdf is normally given by:
 $$p = 0.5 + \frac{\text{atan}(x)}{\pi}$$
 But that suffers from cancellation error as $x \to -\infty$. So recall that for $x < 0$:
 $$\text{atan}(x) = -\frac{\pi}{2} - \frac{\text{atan}(1/x)}{x < 0}$$
 Substituting into the above we get:
 $$p = -\frac{\text{atan}(1/x)}{x < 0}$$
 So the procedure is to calculate the cdf for $-\text{fabs}(x)$ using the above formula. Note that to factor in the location and scale parameters you must substitute $(x - x_0) / \gamma$ for x in the above.
 This procedure yields the smaller of p and q, so the result may need subtracting from 1 depending on whether we want the complement or not, and whether x is less than x_0 or not. |
| quantile | The same procedure is used irrespective of whether we're starting from the probability or it's complement. First the argument p is reduced to the range $[-0.5, 0.5]$, then the relation
 $$x = x_0 \pm \gamma / \tan(\pi \times p)$$
 is used to obtain the result. Whether we're adding or subtracting from x_0 is determined by whether we're starting from the complement or not. |
| mode | The location parameter. |

References
- Cauchy-Lorentz distribution
- NIST Exploratory Data Analysis

Chi Squared Distribution

```cpp
#include <boost/math/distributions/chi_squared.hpp>
```
namespace boost{ namespace math{

 template <class RealType = double,
 class Policy = policies::policy<> >
 class chi_squared_distribution;

 typedef chi_squared_distribution<> chi_squared;

 template <class RealType, class Policy>
 class chi_squared_distribution
 {
 public:
 typedef RealType value_type;
 typedef Policy policy_type;

 // Constructor:
 chi_squared_distribution(RealType i);

 // Accessor to parameter:
 RealType degrees_of_freedom()const;

 // Parameter estimation:
 static RealType find_degrees_of_freedom(
 RealType difference_from_mean,
 RealType alpha,
 RealType beta,
 RealType sd,
 RealType hint = 100);
 }

 } // namespaces

The Chi-Squared distribution is one of the most widely used distributions in statistical tests. If \(\chi_i \) are \(\nu \) independent, normally distributed random variables with means \(\mu_i \) and variances \(\sigma_i^2 \), then the random variable:

\[
Q = \sum_{i=1}^{\nu} \left(\frac{\chi_i - \nu_i}{\sigma_i} \right)^2
\]

is distributed according to the Chi-Squared distribution.

The Chi-Squared distribution is a special case of the gamma distribution and has a single parameter \(\nu \) that specifies the number of degrees of freedom. The following graph illustrates how the distribution changes for different values of \(\nu \):
Member Functions

```cpp
chi_squared_distribution(RealType v);
```

Constructs a Chi-Squared distribution with v degrees of freedom.

Requires $v > 0$, otherwise calls `domain_error`.

```cpp
RealType degrees_of_freedom() const;
```

Returns the parameter v from which this object was constructed.

```cpp
static RealType find_degrees_of_freedom(
    RealType difference_from_variance,
    RealType alpha,
    RealType beta,
    RealType variance,
    RealType hint = 100);
```

Estimates the sample size required to detect a difference from a nominal variance in a Chi-Squared test for equal standard deviations.

- **difference_from_variance**: The difference from the assumed nominal variance that is to be detected. Note that the sign of this value is critical, see below.
- **alpha**: The maximum acceptable risk of rejecting the null hypothesis when it is in fact true.
- **beta**: The maximum acceptable risk of falsely failing to reject the null hypothesis.
- **variance**: The nominal variance being tested against.
- **hint**: An optional hint on where to start looking for a result: the current sample size would be a good choice.

Note that this calculation works with *variances* and not *standard deviations*.
The sign of the parameter $difference_{from\ variance}$ is important: the Chi Squared distribution is asymmetric, and the caller must decide in advance whether they are testing for a variance greater than a nominal value (positive $difference_{from\ variance}$) or testing for a variance less than a nominal value (negative $difference_{from\ variance}$). If the latter, then obviously it is a requirement that $variance + difference_{from\ variance} > 0$, since no sample can have a negative variance!

See also section on Sample sizes required in the NIST Engineering Statistics Handbook, Section 7.2.3.2.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis excess, range and support.

(We have followed the usual restriction of the mode to degrees of freedom ≥ 2, but note that the maximum of the pdf is actually zero for degrees of freedom from 2 down to 0, and provide an extended definition that would avoid a discontinuity in the mode as alternative code in a comment).

The domain of the random variable is $[0, +\infty]$.

Examples

Various worked examples are available illustrating the use of the Chi Squared Distribution.

Accuracy

The Chi-Squared distribution is implemented in terms of the incomplete gamma functions: please refer to the accuracy data for those functions.

Implementation

In the following table v is the number of degrees of freedom of the distribution, x is the random variate, p is the probability, and $q = 1-p$.

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: $pdf = \text{gamma}_p_derivative(v/2, x/2)/2$</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: $p = \text{gamma}_p(v/2, x/2)$</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: $q = \text{gamma}_q(v/2, x/2)$</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: $x = 2 * \text{gamma}_p_inv(v/2, p)$</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: $x = 2 * \text{gamma}_q_inv(v/2, p)$</td>
</tr>
<tr>
<td>mean</td>
<td>v</td>
</tr>
<tr>
<td>variance</td>
<td>$2v$</td>
</tr>
<tr>
<td>mode</td>
<td>$v - 2$ (if $v \geq 2$)</td>
</tr>
<tr>
<td>skewness</td>
<td>$2 * \sqrt{2/v} = \sqrt{8/v}$</td>
</tr>
<tr>
<td>kurtosis</td>
<td>$3 + 12/v$</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>$12/v$</td>
</tr>
</tbody>
</table>
References

- NIST Exploratory Data Analysis
- Chi-square distribution

Exponential Distribution

```cpp
#include <boost/math/distributions/exponential.hpp>

template <class RealType = double,
    class Policy = policies::policy<> >
class exponential_distribution;

typedef exponential_distribution<> exponential;

template <class RealType, class Policy>
class exponential_distribution
{
    public:
        typedef RealType value_type;
        typedef Policy   policy_type;

        exponential_distribution(RealType lambda = 1);

        RealType lambda()const;
};
```

The exponential distribution is a continuous probability distribution with PDF:

\[f(x) = \lambda e^{-\lambda x} \]

It is often used to model the time between independent events that happen at a constant average rate.

The following graph shows how the distribution changes for different values of the rate parameter lambda:
Member Functions

```cpp
exponential_distribution(RealType lambda = 1);
```

Constructs an **Exponential distribution** with parameter `lambda`. Lambda is defined as the reciprocal of the scale parameter. Requires `lambda > 0`, otherwise calls `domain_error`.

```cpp
RealType lambda() const;
```

Accessor function returns the lambda parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: **Cumulative Distribution Function**, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is `[0, +∞)`.

Accuracy

The exponential distribution is implemented in terms of the standard library functions `exp`, `log`, `log1p` and `expm1` and as such should have very low error rates.

Implementation

In the following table \(\lambda \) is the parameter lambda of the distribution, \(x \) is the random variate, \(p \) is the probability and \(q = 1-p \).

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: (\text{pdf} = \lambda \times \exp(-\lambda \times x))</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: (p = 1 - \exp(-x \times \lambda) = -\expm1(-x \times \lambda))</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: (q = \exp(-x \times \lambda))</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: (x = -\log(1-p) / \lambda = -\log1p(-p) / \lambda)</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: (x = -\log(q) / \lambda)</td>
</tr>
<tr>
<td>mean</td>
<td>1/\lambda</td>
</tr>
<tr>
<td>standard deviation</td>
<td>1/\lambda</td>
</tr>
<tr>
<td>mode</td>
<td>0</td>
</tr>
<tr>
<td>skewness</td>
<td>2</td>
</tr>
<tr>
<td>kurtosis</td>
<td>9</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>6</td>
</tr>
</tbody>
</table>

references

- Weisstein, Eric W. "Exponential Distribution." From MathWorld--A Wolfram Web Resource
Extreme Value Distribution

```cpp
#include <boost/math/distributions/extreme.hpp>

template <class RealType = double,
           class Policy = policies::policy>
class extreme_value_distribution;

typedef extreme_value_distribution<> extreme_value;

template <class RealType, class Policy>
class extreme_value_distribution
{
  public:
    typedef RealType value_type;

    extreme_value_distribution(RealType location = 0, RealType scale = 1);
    RealType scale()const; 
    RealType location()const;
};
```

There are various extreme value distributions: this implementation represents the maximum case, and is variously known as a Fisher-Tippett distribution, a log-Weibull distribution or a Gumbel distribution.

Extreme value theory is important for assessing risk for highly unusual events, such as 100-year floods.

More information can be found on the NIST, Wikipedia, Mathworld, and Extreme value theory websites.

The relationship of the types of extreme value distributions, of which this is but one, is discussed by Extreme Value Distributions, Theory and Applications Samuel Kotz & Saralees Nadarajah.

The distribution has a PDF given by:

\[f(x) = \frac{1}{\text{scale}} e^{-\frac{x - \text{location}}{\text{scale}}} e^{-e^{-\frac{x - \text{location}}{\text{scale}}}} \]

Which in the standard case (scale = 1, location = 0) reduces to:

\[f(x) = e^{-x} e^{-x} \]

The following graph illustrates how the PDF varies with the location parameter:
And this graph illustrates how the PDF varies with the shape parameter:

Member Functions

```cpp
extreme_value_distribution(RealType location = 0, RealType scale = 1);
```

Constructs an Extreme Value distribution with the specified location and scale parameters.

Requires `scale > 0`, otherwise calls `domain_error`.

```cpp
RealType location() const;
```

Returns the location parameter of the distribution.
RealType scale() const;

Returns the scale parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random parameter is \([-\infty, +\infty]\).

Accuracy

The extreme value distribution is implemented in terms of the standard library \(\exp\) and \(\log\) functions and as such should have very low error rates.

Implementation

In the following table: \(a\) is the location parameter, \(b\) is the scale parameter, \(x\) is the random variate, \(p\) is the probability and \(q = 1-p\).

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: pdf = (\exp((a-x)/b) \times \exp(-\exp((a-x)/b)) / b)</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: (p = \exp(-\exp((a-x)/b)))</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: (q = -\expm1(-\exp((a-x)/b)))</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: (a - \log(-\log(p)) \times b)</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: (a - \log(-\log1p(-q)) \times b)</td>
</tr>
<tr>
<td>mean</td>
<td>(a + \text{Euler-Mascheroni-constant} \times b)</td>
</tr>
<tr>
<td>standard deviation</td>
<td>(\pi \times b / \sqrt{6})</td>
</tr>
<tr>
<td>mode</td>
<td>The same as the location parameter (a)</td>
</tr>
<tr>
<td>skewness</td>
<td>(12 \times \sqrt{6} \times \text{zeta}(3) / \pi^3)</td>
</tr>
<tr>
<td>kurtosis</td>
<td>(27 / 5)</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>(\text{kurtosis} - 3 \text{ or } 12 / 5)</td>
</tr>
</tbody>
</table>

F Distribution

```cpp
#include <boost/math/distributions/fisher_f.hpp>
```

152
The F distribution is a continuous distribution that arises when testing whether two samples have the same variance. If χ^2_m and χ^2_n are independent variates each distributed as Chi-Squared with m and n degrees of freedom, then the test statistic:

$$F_{n,m} = \frac{(\chi^2_n / n)}{(\chi^2_m / m)}$$

Is distributed over the range $[0, \infty]$ with an F distribution, and has the PDF:

$$f_{n,m}(x) = \frac{\frac{m}{n} \cdot \frac{\frac{n}{m}}{\chi^2(\frac{n}{m})} - 1}{(m + nx)^{-\frac{m+n}{2}}} B\left(\frac{n}{2}, \frac{m}{2}\right)$$

The following graph illustrates how the PDF varies depending on the two degrees of freedom parameters.
Member Functions

```cpp
fisher_f_distribution(const RealType& df1, const RealType& df2);
```

Constructs an F-distribution with numerator degrees of freedom \(df1\) and denominator degrees of freedom \(df2\).

Requires that \(df1\) and \(df2\) are both greater than zero, otherwise `domain_error` is called.

```cpp
RealType degrees_of_freedom1()const;
```

Returns the numerator degrees of freedom parameter of the distribution.

```cpp
RealType degrees_of_freedom2()const;
```

Returns the denominator degrees of freedom parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is \([0, +\infty]\).

Examples

Various worked examples are available illustrating the use of the F Distribution.

Accuracy

The normal distribution is implemented in terms of the incomplete beta function and it's inverses, refer to those functions for accuracy data.

Implementation

In the following table \(v1\) and \(v2\) are the first and second degrees of freedom parameters of the distribution, \(x\) is the random variate, \(p\) is the probability, and \(q = 1-p\).
<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
</table>
| pdf | The usual form of the PDF is given by:
\[
f_{n,m}(x) = \frac{m^n n^m x^{m-1}}{(m+nx)^\frac{n+m}{2}} B\left(\frac{n}{2}, \frac{m}{2}\right)
\]
However, that form is hard to evaluate directly without incurring problems with either accuracy or numeric overflow. Direct differentiation of the CDF expressed in terms of the incomplete beta function led to the following two formulas:
\[f_{v1,v2}(x) = y \cdot \text{ibeta_derivative}(v2 / 2, v1 / 2, v2 / (v2 + v1 * x))\]
with \(y = (v2 \cdot v1) / ((v2 + v1 * x) \cdot (v2 + v1 * x))\)
and
\[f_{v1,v2}(x) = y \cdot \text{ibeta_derivative}(v1 / 2, v2 / 2, v1 * x / (v2 + v1 * x))\]
with \(y = (z \cdot v1 - x \cdot v1 * v1) / z^2\)
and \(z = v2 + v1 * x\)
The first of these is used for \(v1 * x > v2\), otherwise the second is used.
The aim is to keep the \(x\) argument to \text{ibeta_derivative} away from 1 to avoid rounding error. |
| cdf | Using the relations:
\[p = \text{ibeta}(v1 / 2, v2 / 2, v1 * x / (v2 + v1 * x))\]
and
\[p = \text{ibetac}(v2 / 2, v1 / 2, v2 / (v2 + v1 * x))\]
The first is used for \(v1 * x > v2\), otherwise the second is used.
The aim is to keep the \(x\) argument to \text{ibeta} well away from 1 to avoid rounding error. |
| cdf complement | Using the relations:
\[p = \text{ibetac}(v1 / 2, v2 / 2, v1 * x / (v2 + v1 * x))\]
and
\[p = \text{ibeta}(v2 / 2, v1 / 2, v2 / (v2 + v1 * x))\]
The first is used for \(v1 * x < v2\), otherwise the second is used.
The aim is to keep the \(x\) argument to \text{ibeta} well away from 1 to avoid rounding error. |
Function | Implementation Notes
--- | ---
quantile | Using the relation:
\[x = v_2 \times a / (v_1 \times b) \]
where:
\[a = \text{ibeta}_\text{inv}(v_1 / 2, v_2 / 2, p) \]
and
\[b = 1 - a \]
Quantities \(a \) and \(b \) are both computed by \text{ibeta}_\text{inv} without the subtraction implied above.

quantile from the complement | Using the relation:
\[x = v_2 \times a / (v_1 \times b) \]
where
\[a = \text{ibetac}_\text{inv}(v_1 / 2, v_2 / 2, p) \]
and
\[b = 1 - a \]
Quantities \(a \) and \(b \) are both computed by \text{ibetac}_\text{inv} without the subtraction implied above.

mean | \[v_2 / (v_2 - 2) \]

variance | \[2 \times v_2^2 \times (v_1 + v_2 - 2) / (v_1 \times (v_2 - 2) \times (v_2 - 2) \times (v_2 - 4)) \]

mode | \[v_2 \times (v_1 - 2) / (v_1 \times (v_2 + 2)) \]

skewness | \[2 \times (v_2 + 2 \times v_1 - 2) \times \sqrt{((2 \times v_2 - 8) / (v_1 \times (v_2 + v_1 - 2))) / (v_2 - 6)} \]

kurtosis and kurtosis excess | Refer to, Weisstein, Eric W. "F-Distribution." From MathWorld--A Wolfram Web Resource.

Gamma (and Erlang) Distribution

```cpp
#include <boost/math/distributions/gamma.hpp>
```

Gamma (and Erlang) Distribution
The gamma distribution is a continuous probability distribution. When the shape parameter is an integer then it is known as the Erlang Distribution. It is also closely related to the Poisson and Chi Squared Distributions.

When the shape parameter has an integer value, the distribution is the Erlang distribution. Since this can be produced by ensuring that the shape parameter has an integer value > 0, the Erlang distribution is not separately implemented.

Note

To avoid potential confusion with the gamma functions, this distribution does not provide the typedef:

```cpp
typedef gamma_distribution<double> gamma;
```

Instead if you want a double precision gamma distribution you can use

```cpp
boost::math::gamma_distribution<>;
```

For shape parameter \(k \) and scale parameter \(\theta \) it is defined by the probability density function:

\[
f(x; k, \theta) = x^{k-1} e^{-x/\theta} / \theta^k \Gamma(k)
\]

Sometimes an alternative formulation is used: given parameters \(\alpha = k \) and \(\beta = 1 / \theta \), then the distribution can be defined by the PDF:

\[
f(x; \alpha, \beta) = x^{\alpha-1} \beta e^{-x/\beta} / \Gamma(\alpha)
\]

In this form the inverse scale parameter is called a rate parameter.

Both forms are in common usage: this library uses the first definition throughout. Therefore to construct a Gamma Distribution from a rate parameter, you should pass the reciprocal of the rate as the scale parameter.

The following two graphs illustrate how the PDF of the gamma distribution varies as the parameters vary:
The **Erlang Distribution** is the same as the Gamma, but with the shape parameter an integer. It is often expressed using a *rate* rather than a *scale* as the second parameter (remember that the rate is the reciprocal of the scale).

Internally the functions used to implement the Gamma Distribution are already optimised for small-integer arguments, so in general there should be no great loss of performance from using a Gamma Distribution rather than a dedicated Erlang Distribution.

Member Functions

```cpp
gamma_distribution<RealType> shape, RealType scale = 1));
```

Constructs a gamma distribution with shape `shape` and scale `scale`.

Requires that the shape and scale parameters are greater than zero, otherwise calls `domain_error`.
RealType shape() const;

Returns the shape parameter of this distribution.

RealType scale() const;

Returns the scale parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis excess, range and support.

The domain of the random variable is $[0, +\infty]$.

Accuracy

The lognormal distribution is implemented in terms of the incomplete gamma functions gamma_p and gamma_q and their inverses gamma_p^{-1} and gamma_q^{-1}: refer to the accuracy data for those functions for more information.

Implementation

In the following table k is the shape parameter of the distribution, θ is its scale parameter, x is the random variate, p is the probability and $q = 1-p$.

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: $pdf = \text{gamma}_p^{-1}(k, x / \theta) / \theta$</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: $p = \text{gamma}_p(k, x / \theta)$</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: $q = \text{gamma}_q(k, x / \theta)$</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: $x = \theta^* \text{gamma}_p^{-1}(k, p)$</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: $x = \theta^* \text{gamma}_q^{-1}(k, p)$</td>
</tr>
<tr>
<td>mean</td>
<td>$k\theta$</td>
</tr>
<tr>
<td>variance</td>
<td>$k\theta^2$</td>
</tr>
<tr>
<td>mode</td>
<td>$(k-1)\theta$ for $k>1$ otherwise a domain_error</td>
</tr>
<tr>
<td>skewness</td>
<td>$2 / \sqrt{k}$</td>
</tr>
<tr>
<td>kurtosis</td>
<td>$3 + 6 / k$</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>$6 / k$</td>
</tr>
</tbody>
</table>

Hypergeometric Distribution

```cpp
#include <boost/math/distributions/hypergeometric.hpp>
```
namespace boost { namespace math {

 template <class RealType = double,
 class Policy = policies::policy<> >
 class hypergeometric_distribution;

 template <class RealType, class Policy>
 class hypergeometric_distribution
 {
 public:
 typedef RealType value_type;
 typedef Policy policy_type;
 // Construct:
 hypergeometric_distribution(unsigned r, unsigned n, unsigned N);
 // Accessors:
 unsigned total()const;
 unsigned defective()const;
 unsigned sample_count()const;

 typedef hypergeometric_distribution<> hypergeometric;

 } // namespaces

The hypergeometric distribution describes the number of "events" k from a sample n drawn from a total population N without replacement.

Imagine we have a sample of N objects of which r are "defective" and $N-r$ are "not defective" (the terms "success/failure" or "red/blue" are also used). If we sample n items without replacement then what is the probability that exactly k items in the sample are defective? The answer is given by the pdf of the hypergeometric distribution $f(k; r, n, N)$, whilst the probability of k defectives or fewer is given by $F(k; r, n, N)$, where $F(k)$ is the CDF of the hypergeometric distribution.

Note

Unlike almost all of the other distributions in this library, the hypergeometric distribution is strictly discrete: it can not be extended to real valued arguments of its parameters or random variable.

The following graph shows how the distribution changes as the proportion of "defective" items changes, while keeping the population and sample sizes constant:
Note that since the distribution is symmetrical in parameters n and r, if we change the sample size and keep the population and proportion "defective" the same then we obtain basically the same graphs:

Member Functions

```cpp
class hypergeometric_distribution( unsigned r, unsigned n, unsigned N );
```

Constructs a hypergeometric distribution with with a population of N objects, of which r are defective, and from which n are sampled.

```cpp
unsigned total() const;
```

Returns the total number of objects N.
unsigned defective() const;

Returns the number of objects \(r \) in population \(N \) which are defective.

unsigned sample_count() const;

Returns the number of objects \(n \) which are sampled from the population \(N \).

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis excess, range and support.

The domain of the random variable is the unsigned integers in the range \([\text{max}(0, n + r - N), \text{min}(n, r)]\). A domain_error is raised if the random variable is outside this range, or is not an integral value.

Caution

The quantile function will by default return an integer result that has been rounded outwards. That is to say lower quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles (where the probability is greater than 0.5) are rounded upwards. This behaviour ensures that if an X\% quantile is requested, then at least the requested coverage will be present in the central region, and no more than the requested coverage will be present in the tails.

This behaviour can be changed so that the quantile functions are rounded differently using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete Distributions before using the quantile function on the Hypergeometric distribution. The reference docs describe how to change the rounding policy for these distributions.

However, note that the implementation method of the quantile function always returns an integral value, therefore attempting to use a Policy that requires (or produces) a real valued result will result in a compile time error.

Accuracy

For small \(N \) such that \(N < \text{boost::math::max_factorial<RealType>::value} \) then table based lookup of the results gives an accuracy to a few epsilon. \text{boost::math::max_factorial<RealType>::value} is 170 at double or long double precision.

For larger \(N \) such that \(N < \text{boost::math::prime(boost::math::max_prime)} \) then only basic arithmetic is required for the calculation and the accuracy is typically < 20 epsilon. This takes care of \(N \) up to 104729.

For \(N > \text{boost::math::prime(boost::math::max_prime)} \) then accuracy quickly degrades, with 5 or 6 decimal digits being lost for \(N = 110000 \).

In general for very large \(N \), the user should expect to loose \(\log_{10} N \) decimal digits of precision during the calculation, with the results becoming meaningless for \(N \geq 10^{19} \).

Testing

There are three sets of tests: our implementation is tested against a table of values produced by Mathematica's implementation of this distribution. We also sanity check our implementation against some spot values computed using the online calculator here http://stattrek.com/Tables/Hypergeometric.aspx. Finally we test accuracy against some high precision test data using this implementation and NTL::RR.

Implementation

The PDF can be calculated directly using the formula:
\[f(k; r, n, N) = \frac{n!r!(N-n)!(N-r)!}{N!k!(n-k)!(r-k)!(N-n-r+k)!}; \quad \text{max}(0,N-r-n+k) \leq k \leq \min(r, n) \]

However, this can only be used directly when the largest of the factorials is guaranteed not to overflow the floating point representation used. This formula is used directly when \(N < \text{max_factorial}<\text{RealType>:value} \) in which case table lookup of the factorials gives a rapid and accurate implementation method.

For larger \(N \) the method described in "An Accurate Computation of the Hypergeometric Distribution Function", Trong Wu, ACM Transactions on Mathematical Software, Vol. 19, No. 1, March 1993, Pages 33-43 is used. The method relies on the fact that there is an easy method for factorising a factorial into the product of prime numbers:

\[N! = \prod_{i=0}^{p_i < N} p_i^{e_i} \]

Where \(p_i \) is the \(i \)'th prime number, and \(e_i \) is a small positive integer or zero, which can be calculated via:

\[e_i = \sum_{j=1}^{p_i \leq N} \text{floor} \left(\frac{N}{p_i} \right) \]

Further we can combine the factorials in the expression for the PDF to yield the PDF directly as the product of prime numbers:

\[f(k; r, n, N) = \prod_{i=0}^{p_i < N} p_i^{e_i} \]

With this time the exponents \(e_i \) being either positive, negative or zero. Indeed such a degree of cancellation occurs in the calculation of the \(e_i \) that many are zero, and typically most have a magnitude or no more than 1 or 2.

Calculation of the product of the primes requires some care to prevent numerical overflow, we use a novel recursive method which splits the calculation into a series of sub-products, with a new sub-product started each time the next multiplication would cause either overflow or underflow. The sub-products are stored in a linked list on the program stack, and combined in an order that will guarantee no overflow or unnecessary-underflow once the last sub-product has been calculated.

This method can be used as long as \(N \) is smaller than the largest prime number we have stored in our table of primes (currently 104729). The method is relatively slow (calculating the exponents requires the most time), but requires only a small number of arithmetic operations to calculate the result (indeed there is no shorter method involving only basic arithmetic once the exponents have been found), the method is therefore much more accurate than the alternatives.

For much larger \(N \), we can calculate the PDF from the factorials using either lgamma, or by directly combining lanczos approximations to avoid calculating via logarithms. We use the latter method, as it is usually 1 or 2 decimal digits more accurate than computing via logarithms with lgamma. However, in this area where \(N > 104729 \), the user should expect to loose around \(\log_{10}N \) decimal digits during the calculation in the worst case.

The CDF and its complement is calculated by directly summing the PDF’s. We start by deciding whether the CDF, or its complement, is likely to be the smaller of the two and then calculate the PDF at \(k \) (or \(k+1 \) if we’re calculating the complement) and calculate successive PDF values via the recurrence relations:

\[
\begin{align*}
 f(k+1; r, n, N) &= \frac{(a-k)(r-k)}{(k+1)(N-a-r+k+1)}f(k; r, n, N) \\
 f(k-1; r, n, N) &= \frac{x(N-n-r+k)}{(a-k+1)(r-k+1)}f(k; r, n, N)
\end{align*}
\]

Until we either reach the end of the distributions domain, or the next PDF value to be summed would be too small to affect the result.
The quantile is calculated in a similar manner to the CDF: we first guess which end of the distribution we’re nearer to, and then sum PDFs starting from the end of the distribution this time, until we have some value \(k \) that gives the required CDF.

The median is simply the quantile at 0.5, and the remaining properties are calculated via:

\[
\begin{align*}
\text{mean} & = \frac{rn}{N} \\
\text{mode} & = \text{floor}\left(\frac{(r + 1)(n + 1)}{N + 2}\right) \\
\text{variance} & = \frac{r}{n(N - n)(N - r)} \\
\text{skewness} & = \frac{(N - 2n)(N - 1)(N - 2r)}{\sqrt{n}(N - n)(N - r)(N - 2)} \\
\text{kurtosis excess} & = \left(\frac{N^2(N - 1)}{n(N - 2)(N - 3)(N - r)}\right)\left(\frac{N + 1 - 6N(N - r)}{n(N - n)}\right) + \frac{3r(N - r)(N + 6)}{N^2} - 6
\end{align*}
\]

Laplace Distribution

```cpp
#include <boost/math/distributions/laplace.hpp>

namespace boost { namespace math {

    template <class RealType = double, class Policy = policies::policy<> >
    class laplace_distribution;

typedef laplace_distribution<> laplace;

template <class RealType, class Policy>
    class laplace_distribution {
    public:
        typedef RealType value_type;
        typedef Policy policy_type;
        // Construct:
        laplace_distribution(RealType location = 0, RealType scale = 1);
        // Accessors:
        RealType location() const;
        RealType scale() const;
    };

}} // namespaces
```

Laplace distribution is the distribution of differences between two independent variates with identical exponential distributions (Abramowitz and Stegun 1972, p. 930). It is also called the double exponential distribution.

For location parameter \(\mu \) and scale parameter \(\sigma \) it is defined by the probability density function:

\[
f(x; \mu, \sigma) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}
\]

The location and scale parameters are equivalent to the mean and standard deviation of the normal or Gaussian distribution.

The following graph illustrates the effect of the parameters \(\mu \) and \(\sigma \) on the PDF. Note that the range of the random variable remains \([-\infty, +\infty]\) irrespective of the value of the location parameter:
Member Functions

```cpp
laplace_distribution(RealType location = 0, RealType scale = 1);
```

Constructs a laplace distribution with location `location` and scale `scale`.

The location parameter is the same as the mean of the random variate.

The scale parameter is proportional to the standard deviation of the random variate.

Requires that the scale parameter is greater than zero, otherwise calls `domain_error`.

```cpp
RealType location() const;
```

Returns the `location` parameter of this distribution.

```cpp
RealType scale() const;
```

Returns the `scale` parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is $[-\infty, +\infty]$.

Accuracy

The laplace distribution is implemented in terms of the standard library log and exp functions and as such should have very small errors.
Implementation

In the following table μ is the location parameter of the distribution, σ is its scale parameter, x is the random variate, p is the probability and its complement $q = 1-p$.

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: $pdf = e^{-\frac{</td>
</tr>
</tbody>
</table>
| cdf | Using the relations:
$x < \mu : p = e^{\frac{(x-\mu)}{\sigma}} / \sigma$
$x \geq \mu : p = 1 - e^{\frac{(\mu-x)}{\sigma}} / \sigma$ |
| cdf complement | Using the relation:
$-x < \mu : q = e^{\frac{(-x-\mu)}{\sigma}} / \sigma$
$-x \geq \mu : q = 1 - e^{\frac{(\mu+x)}{\sigma}} / \sigma$ |
| quantile | Using the relations:
p < 0.5 : $x = \mu + \sigma * \log(2*p)$
p >= 0.5 : $x = \mu - \sigma * \log(2-2*p)$ |
| quantile from the complement | Using the relation:
q > 0.5: $x = \mu + \sigma*\log(2-2*q)$
q <=0.5: $x = \mu - \sigma*\log(2*q)$ |
| mean | μ |
| variance | $2 * \sigma^2$ |
| mode | μ |
| skewness | 0 |
| kurtosis | 6 |
| kurtosis excess | 3 |

References

- Laplace Distribution
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, p. 930.

Logistic Distribution

```cpp
#include <boost/math/distributions/logistic.hpp>
```
namespace boost { namespace math {

template <class RealType = double,
class Policy = policies::policy<> >
class logistic_distribution;

template <class RealType, class Policy>
class logistic_distribution
{
public:
 typedef RealType value_type;
 typedef Policy policy_type;
 // Construct:
 logistic_distribution(RealType location = 0, RealType scale = 1);

 // Accessors:
 RealType location()const; // location.
 RealType scale()const; // scale.
};

typedef logistic_distribution<> logistic;
}} // namespaces

The logistic distribution is a continuous probability distribution. It has two parameters - location and scale. The cumulative distribution function of the logistic distribution appears in logistic regression and feedforward neural networks. Among other applications, United State Chess Federation and FIDE use it to calculate chess ratings.

The following graph shows how the distribution changes as the parameters change:

![Logistic Distribution PDF](image)

Member Functions

logistic_distribution(RealType u = 0, RealType s = 1);

Constructs a logistic distribution with location \(u \) and scale \(s \).

Requires \(s > 0 \), otherwise a **domain_error** is raised.
RealType location() const;

Returns the location of this distribution.

RealType scale() const;

Returns the scale of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis excess, range and support.

The domain of the random variable is \([-\text{max}_{\text{value}}, +\text{min}_{\text{value}}]\). However, the pdf and cdf support inputs of \(+\infty\) and \(-\infty\) as special cases if RealType permits.

At \(p=1\) and \(p=0\), the quantile function returns the result of \(+\text{overflow_error}\) and \(-\text{overflow_error}\), while the complement quantile function returns the result of \(-\text{overflow_error}\) and \(+\text{overflow_error}\) respectively.

Accuracy

The logistic distribution is implemented in terms of the `std::exp` and the `std::log` functions, so its accuracy is related to the accurate implementations of those functions on a given platform. When calculating the quantile with a non-zero `position` parameter catastrophic cancellation errors can occur: in such cases, only a low absolute error can be guaranteed.

Implementation

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: (pdf = e^{(x-u)/s} / (s*(1+e^{(x-u)/s})^2))</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: (p = 1/(1+e^{-(x-u)/s}))</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: (q = 1/(1+e^{(x-u)/s}))</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: (x = u - s*\log(1/p-1))</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: (x = u + s*\log(p/1-p))</td>
</tr>
<tr>
<td>mean</td>
<td>u</td>
</tr>
<tr>
<td>mode</td>
<td>The same as the mean.</td>
</tr>
<tr>
<td>skewness</td>
<td>0</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>6/5</td>
</tr>
<tr>
<td>variance</td>
<td>((\pi^2s)^2 / 3)</td>
</tr>
</tbody>
</table>

Log Normal Distribution

```cpp
#include <boost/math/distributions/lognormal.hpp>
```

168
The lognormal distribution is the distribution that arises when the logarithm of the random variable is normally distributed. A lognormal distribution results when the variable is the product of a large number of independent, identically-distributed variables.

For location and scale parameters \(m \) and \(s \) it is defined by the probability density function:

\[
f(x) = \frac{1}{xs\sqrt{2\pi}} e^{-\frac{(\ln x - m)^2}{2s^2}}
\]

The location and scale parameters are equivalent to the mean and standard deviation of the logarithm of the random variable.

The following graph illustrates the effect of the location parameter on the PDF, note that the range of the random variable remains \([0, +\infty]\) irrespective of the value of the location parameter:

The next graph illustrates the effect of the scale parameter on the PDF:
Lognormal Distribution PDF (location=0)

![Graph of Lognormal Distribution PDF with different scale values](image)

Member Functions

```cpp
lognormal_distribution(RealType location = 0, RealType scale = 1);
```

Constructs a lognormal distribution with location `location` and scale `scale`.

The location parameter is the same as the mean of the logarithm of the random variate.

The scale parameter is the same as the standard deviation of the logarithm of the random variate.

Requires that the scale parameter is greater than zero, otherwise calls `domain_error`.

```cpp
RealType location() const;
```

Returns the `location` parameter of this distribution.

```cpp
RealType scale() const;
```

Returns the `scale` parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, +∞].

Accuracy

The lognormal distribution is implemented in terms of the standard library log and exp functions, plus the error function, and as such should have very low error rates.
Implementation

In the following table \(m \) is the location parameter of the distribution, \(s \) is its scale parameter, \(x \) is the random variate, \(p \) is the probability and \(q = 1-p \).

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: pdf = (e^{-(\ln(x) - m)^2 / 2s^2} / (x * s * \sqrt{2\pi}))</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: (p = \text{cdf}(\text{normal_distribution<RealType>}(m, s), \log(x)))</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: (q = \text{cdf}(\text{complement}(\text{normal_distribution<RealType>}(m, s), \log(x)))</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: (x = \exp(\text{quantile}(\text{normal_distribution<RealType>}(m, s), p)))</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: (x = \exp(\text{quantile}(\text{complement}(\text{normal_distribution<RealType>}(m, s), q)))</td>
</tr>
<tr>
<td>mean</td>
<td>(e^m + s^2 / 2)</td>
</tr>
<tr>
<td>variance</td>
<td>((e^{s^2} - 1) * e^{2m} + s^2)</td>
</tr>
<tr>
<td>mode</td>
<td>(e^m + s^2)</td>
</tr>
<tr>
<td>skewness</td>
<td>(\sqrt{(e^{s^2} - 1) * (2 + e^{s^2})})</td>
</tr>
<tr>
<td>kurtosis</td>
<td>(e^{4s^2} + 2e^{3s^2} + 3e^{2s^2} - 3)</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>(e^{4s^2} + 2e^{3s^2} + 3e^{2s^2} - 6)</td>
</tr>
</tbody>
</table>

Negative Binomial Distribution

```cpp
#include <boost/math/distributions/negative_binomial.hpp>
```

Math Toolkit
namespace boost { namespace math {

 template <class RealType = double,
 class Policy = policies::policy<> >
 class negative_binomial_distribution;

 typedef negative_binomial_distribution<> negative_binomial;

 template <class RealType, class Policy>
 class negative_binomial_distribution
 {
 public:
 typedef RealType value_type;
 typedef Policy policy_type;

 // Constructor from successes and success_fraction:
 negative_binomial_distribution(RealType r, RealType p);

 // Parameter accessors:
 RealType success_fraction() const;
 RealType successes() const;

 // Bounds on success fraction:
 static RealType find_lower_bound_on_p(
 RealType trials,
 RealType successes,
 RealType probability); // alpha
 static RealType find_upper_bound_on_p(
 RealType trials,
 RealType successes,
 RealType probability); // alpha

 // Estimate min/max number of trials:
 static RealType find_minimum_number_of_trials(
 RealType k, // Number of failures.
 RealType p, // Success fraction.
 RealType probability); // Probability threshold alpha.
 static RealType find_maximum_number_of_trials(
 RealType k, // Number of failures.
 RealType p, // Success fraction.
 RealType probability); // Probability threshold alpha.
 };
}
}} // namespaces

The class type negative_binomial_distribution represents a negative_binomial distribution; it is used when there are exactly two mutually exclusive outcomes of a Bernoulli trial; these outcomes are labelled "success" and "failure".

For \(k + r \) Bernoulli trials each with success fraction \(p \), the negative_binomial distribution gives the probability of observing \(k \) failures and \(r \) successes with success on the last trial. The negative_binomial distribution assumes that success_fraction \(p \) is fixed for all \((k + r) \) trials.

Note

The random variable for the negative binomial distribution is the number of trials, (the number of successes is a fixed property of the distribution) whereas for the binomial, the random variable is the number of successes, for a fixed number of trials.

It has the PDF:
The following graph illustrate how the PDF varies as the success fraction p changes:

\[
f(k; r, p) = \frac{\Gamma(r + k)}{k! \Gamma(r)} p^k (1 - p)^{r-k}
\]

Alternatively, this graph shows how the shape of the PDF varies as the number of successes changes:

Related Distributions

The name negative binomial distribution is reserved by some to the case where the successes parameter r is an integer. This integer version is also called the Pascal distribution.

This implementation uses real numbers for the computation throughout (because it uses the real-valued incomplete beta function family of functions). This real-valued version is also called the Polya Distribution.
The Poisson distribution is a generalization of the Pascal distribution, where the success parameter \(r \) is an integer: to obtain the Pascal distribution you must ensure that an integer value is provided for \(r \), and take integer values (floor or ceiling) from functions that return a number of successes.

For large values of \(r \) (successes), the negative binomial distribution converges to the Poisson distribution.

The geometric distribution is a special case where the successes parameter \(r = 1 \), so only a first and only success is required. geometric(p) = negative_binomial(1, p).

The Poisson distribution is a special case for large successes

\[
\text{poisson}(\lambda) = \lim_{r \to \infty} \text{negative_binomial}(r, r / (\lambda + r))
\]

Caution

The Negative Binomial distribution is a discrete distribution: internally functions like the \text{cdf} and \text{pdf} are treated “as if” they are continuous functions, but in reality the results returned from these functions only have meaning if an integer value is provided for the random variate argument.

The quantile function will by default return an integer result that has been rounded \textit{outwards}. That is to say lower quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles (where the probability is greater than 0.5) are rounded upwards. This behaviour ensures that if an X\% quantile is requested, then \textit{at least} the requested coverage will be present in the central region, and \textit{no more than} the requested coverage will be present in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete Distributions before using the quantile function on the Negative Binomial distribution. The reference docs describe how to change the rounding policy for these distributions.

Member Functions

Construct

\[
\text{negative_binomial_distribution}(\text{RealType } r, \text{ RealType } p);
\]

Constructor: \(r \) is the total number of successes, \(p \) is the probability of success of a single trial.

Requires: \(r > 0 \) and \(0 \leq p \leq 1 \).

Accessors

\[
\text{RealType success_fraction() const; // successes / trials (0 \leq p \leq 1)}
\]

Returns the parameter \(p \) from which this distribution was constructed.

\[
\text{RealType successes() const; // required successes (r > 0)}
\]

Returns the parameter \(r \) from which this distribution was constructed.
Lower Bound on Parameter p

```cpp
static RealType find_lower_bound_on_p(
    RealType failures,
    RealType successes,
    RealType probability) // (0 <= alpha <= 1), 0.05 equivalent to 95% confidence.
```

Returns a **lower bound** on the success fraction:

- **failures** The total number of failures before the r th success.
- **successes** The number of successes required.
- **alpha** The largest acceptable probability that the true value of the success fraction is **less than** the value returned.

For example, if you observe k failures and r successes from n = k + r trials the best estimate for the success fraction is simply r/n, but if you want to be 95% sure that the true value is **greater than** some value, p_{min}, then:

```cpp
    p_{\text{min}} = \text{negative_binomial_distribution<RealType>::find_lower_bound_on_p}(
        failures, successes, 0.05);
```

See negative binomial confidence interval example.

This function uses the Clopper-Pearson method of computing the lower bound on the success fraction, whilst many texts refer to this method as giving an "exact" result in practice it produces an interval that guarantees at least the coverage required, and may produce pessimistic estimates for some combinations of failures and successes. See:

Upper Bound on Parameter p

```cpp
static RealType find_upper_bound_on_p(
    RealType trials,
    RealType successes,
    RealType alpha); // (0 <= alpha <= 1), 0.05 equivalent to 95% confidence.
```

Returns an **upper bound** on the success fraction:

- **trials** The total number of trials conducted.
- **successes** The number of successes that occurred.
- **alpha** The largest acceptable probability that the true value of the success fraction is **greater than** the value returned.

For example, if you observe k successes from n trials the best estimate for the success fraction is simply k/n, but if you want to be 95% sure that the true value is **less than** some value, p_{max}, then:

```cpp
    p_{\text{max}} = \text{negative_binomial_distribution<RealType>::find_upper_bound_on_p}(
        r, k, 0.05);
```

See negative binomial confidence interval example.

This function uses the Clopper-Pearson method of computing the lower bound on the success fraction, whilst many texts refer to this method as giving an "exact" result in practice it produces an interval that guarantees at least the coverage required, and may produce pessimistic estimates for some combinations of failures and successes. See:

Estimating Number of Trials to Ensure at Least a Certain Number of Failures

```cpp
static RealType find_minimum_number_of_trials(
    RealType k, // number of failures.
    RealType p, // success fraction.
    RealType alpha); // probability threshold (0.05 equivalent to 95%).
```

This function estimates the number of trials required to achieve a certain probability that more than k failures will be observed.

- k: The target number of failures to be observed.
- p: The probability of success for each trial.
- alpha: The maximum acceptable risk that only k failures or fewer will be observed.

For example:

```cpp
negative_binomial_distribution<RealType>::find_minimum_number_of_trials(10, 0.5, 0.05);
```

Returns the smallest number of trials we must conduct to be 95% sure of seeing 10 failures that occur with frequency one half.

Worked Example.

This function uses numeric inversion of the negative binomial distribution to obtain the result: another interpretation of the result, is that it finds the number of trials (success+failures) that will lead to an alpha probability of observing k failures or fewer.

Estimating Number of Trials to Ensure a Maximum Number of Failures or Less

```cpp
static RealType find_maximum_number_of_trials(
    RealType k, // number of failures.
    RealType p, // success fraction.
    RealType alpha); // probability threshold (0.05 equivalent to 95%).
```

This function estimates the maximum number of trials we can conduct and achieve a certain probability that k failures or fewer will be observed.

- k: The maximum number of failures to be observed.
- p: The probability of success for each trial.
- alpha: The maximum acceptable risk that more than k failures will be observed.

For example:

```cpp
negative_binomial_distribution<RealType>::find_maximum_number_of_trials(0, 1.0-1.0/1000000, 0.05);
```

Returns the largest number of trials we can conduct and still be 95% sure of seeing no failures that occur with frequency one in one million.

This function uses numeric inversion of the negative binomial distribution to obtain the result: another interpretation of the result, is that it finds the number of trials (success+failures) that will lead to an alpha probability of observing more than k failures.
Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

However it’s worth taking a moment to define what these actually mean in the context of this distribution:

Table 12. Meaning of the non-member accessors.

<table>
<thead>
<tr>
<th>Function</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability Density Function</td>
<td>The probability of obtaining exactly k failures from k+r trials with success fraction (p). For example:</td>
</tr>
<tr>
<td></td>
<td>pdf(negative_binomial(r, p), k)</td>
</tr>
<tr>
<td>Cumulative Distribution Function</td>
<td>The probability of obtaining k failures or fewer from k+r trials with success fraction (p) and success on the last trial. For example:</td>
</tr>
<tr>
<td></td>
<td>cdf(negative_binomial(r, p), k)</td>
</tr>
<tr>
<td>Complement of the Cumulative Distribution Function</td>
<td>The probability of obtaining more than k failures from k+r trials with success fraction (p) and success on the last trial. For example:</td>
</tr>
<tr>
<td></td>
<td>cdf(complement(negative_binomial(r, p), k))</td>
</tr>
<tr>
<td>Quantile</td>
<td>The greatest number of failures (k) expected to be observed from k+r trials with success fraction (p), at probability (P). Note that the value returned is a real-number, and not an integer. Depending on the use case you may want to take either the floor or ceiling of the real result. For example:</td>
</tr>
<tr>
<td></td>
<td>quantile(negative_binomial(r, p), (P))</td>
</tr>
<tr>
<td>Quantile from the complement of the probability</td>
<td>The smallest number of failures (k) expected to be observed from k+r trials with success fraction (p), at probability (P). Note that the value returned is a real-number, and not an integer. Depending on the use case you may want to take either the floor or ceiling of the real result. For example:</td>
</tr>
<tr>
<td></td>
<td>quantile(complement(negative_binomial(r, p), (P)))</td>
</tr>
</tbody>
</table>

Accuracy

This distribution is implemented using the incomplete beta functions \(\text{ibeta} \) and \(\text{ibetac} \): please refer to these functions for information on accuracy.

Implementation

In the following table, \(p \) is the probability that any one trial will be successful (the success fraction), \(r \) is the number of successes, \(k \) is the number of failures, \(p \) is the probability and \(q = 1-p \).
Function Implementation Notes

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
</table>
| pdf | $\text{pdf} = \exp(l\gamma(r + k) - l\gamma(r) - l\gamma(k+1)) \times \text{pow}(p, r) \times \text{pow}((1-p), k)$
 | Implementation is in terms of \textit{ibeta_derivative}:
 | $(p/(r + k)) \times \text{ibeta_derivative}(r, \text{static_cast<RealType>(k+1), p})$ The function \textit{ibeta_derivative} is used here, since it has already been optimised for the lowest possible error - indeed this is really just a thin wrapper around part of the internals of the incomplete beta function. |
| cdf | Using the relation:
 | $\text{cdf} = I_p(r, k+1) = \text{ibeta}(r, k+1, p)$
 | $= \text{ibeta}(r, \text{static_cast<RealType>(k+1), p})$ |
| cdf complement | Using the relation:
 | $1 - \text{cdf} = I_p(k+1, r)$
 | $= \text{ibeta}(r, \text{static_cast<RealType>(k+1), p})$ |
| quantile | $\text{ibeta_invb}(r, p, P) - 1$ |
| quantile from the complement | $\text{ibeta_invb}(r, p, Q) - 1$ |
| mean | $r(1-p)/p$ |
| variance | $r(1-p)/p \times p$ |
| mode | $\text{floor}((r-1) \times (1 - p)/p)$ |
| skewness | $(2 - p) / \sqrt{r \times (1 - p)}$ |
| kurtosis | $6 / r + (p \times p) / r \times (1 - p)$ |
| kurtosis excess | $6 / r + (p \times p) / r \times (1 - p) - 3$ |
| parameter estimation member functions | $\text{ibeta_inv}(\text{successes, failures + 1, alpha})$ |
| | $\text{ibeta_inv}(\text{successes, failures, alpha})$ plus see comments in code. |
| | $\text{ibeta}_inva(k + 1, p, alpha)$ |
| | $\text{ibeta}_inva(k + 1, p, alpha)$ |

Implementation notes:

- The real concept type (that deliberately lacks the Lanczos approximation), was found to take several minutes to evaluate some extreme test values, so the test has been disabled for this type.

- Much greater speed, and perhaps greater accuracy, might be achieved for extreme values by using a normal approximation. This is \textbf{NOT} been tested or implemented.
The noncentral beta distribution is a generalization of the Beta Distribution.

It is defined as the ratio $X = \frac{\chi_m^2(\lambda)}{\chi_m^2(\lambda) + \chi_n^2}$ where $\chi_m^2(\lambda)$ is a noncentral χ^2 random variable with m degrees of freedom, and χ_n^2 is a central χ^2 random variable with n degrees of freedom.

This gives a PDF that can be expressed as a Poisson mixture of beta distribution PDFs:

$$f(x; \alpha, \beta; \lambda) = \sum_{i=0}^{\infty} P(i; \frac{\lambda}{2}) I_x(\alpha + i, \beta)$$

where $P(i; \lambda/2)$ is the discrete Poisson probability at i, with mean $\lambda/2$, and $I_x(\alpha, \beta)$ is the derivative of the incomplete beta function. This leads to the usual form of the CDF as:

$$F(x; \alpha, \beta; \lambda) = \sum_{i=0}^{\infty} P(i; \frac{\lambda}{2}) I_x(\alpha + i, \beta)$$

The following graph illustrates how the distribution changes for different values of λ:

179
Member Functions

```cpp
non_central_beta_distribution(RealType a, RealType b, RealType lambda);
```

Constructs a noncentral beta distribution with shape parameters a and b and non-centrality parameter λ.

Requires $a > 0$, $b > 0$ and $\lambda \geq 0$, otherwise calls domain_error.

```cpp
RealType alpha() const;
```

Returns the parameter a from which this object was constructed.

```cpp
RealType beta() const;
```

Returns the parameter b from which this object was constructed.

```cpp
RealType non_centrality() const;
```

Returns the parameter λ from which this object was constructed.

Non-member Accessors

Most of the usual non-member accessor functions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, median, mode, Hazard Function, Cumulative Hazard Function, range and support.

However, the following are not currently implemented: mean, variance, standard deviation, skewness, kurtosis and kurtosis_excess.

The domain of the random variable is $[0, 1]$.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types. No comparison to the R-2.5.1 Math library, or to the FORTRAN implementations of AS226 or AS310 are given since these appear to only guarantee absolute error: this would causes our test harness to assign an "infinite" error to these libraries for some of our test
values when measuring relative error. Unless otherwise specified any floating-point type that is narrower than the one shown will have effectively zero error.

Table 13. Errors In CDF of the Noncentral Beta

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>$\alpha, \beta, \lambda < 200$</th>
<th>$\alpha, \beta, \lambda > 200$</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=620 Mean=22</td>
<td>Peak=8670 Mean=1040</td>
</tr>
<tr>
<td>64</td>
<td>RedHat Linux IA32, gcc-4.1.1</td>
<td>Peak=825 Mean=50</td>
<td>Peak=2.5x10^4 Mean=4000</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4.4</td>
<td>Peak=825 Mean=30</td>
<td>Peak=1.7x10^4 Mean=2500</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=420 Mean=50</td>
<td>Peak=9200 Mean=1200</td>
</tr>
</tbody>
</table>

Error rates for the PDF, the complement of the CDF and for the quantile functions are broadly similar.

Tests

There are two sets of test data used to verify this implementation: firstly we can compare with a few sample values generated by the R library. Secondly, we have tables of test data, computed with this implementation and using interval arithmetic - this data should be accurate to at least 50 decimal digits - and is the used for our accuracy tests.

Implementation

The CDF and its complement are evaluated as follows:

First we determine which of the two values (the CDF or its complement) is likely to be the smaller, the crossover point is taken to be the mean of the distribution: for this we use the approximation due to: R. Chattamvelli and R. Shanmugam, "Algorithm AS 310: Computing the Non-Central Beta Distribution Function", Applied Statistics, Vol. 46, No. 1. (1997), pp. 146-156.

$$E(X) \approx 1 - \left(\frac{\beta}{C}\right)\left(1 + \frac{\lambda}{2C^2}\right) ; \quad C = \alpha + \beta + \frac{\lambda}{2}$$

Then either the CDF or its complement is computed using the relations:

$$F(x; \alpha, \beta, \lambda) = \sum_{i=0}^{\infty} P(i; \frac{\lambda}{2}) I_x(\alpha + i, \beta)$$

$$1 - F(x; \alpha, \beta, \lambda) = \sum_{i=0}^{\infty} P(i; \frac{\lambda}{2})(1 - I_x(\alpha + i, \beta))$$

The summation is performed by starting at $i = \lambda/2$, and then recursing in both directions, using the usual recurrence relations for the Poisson PDF and incomplete beta functions. This is the "Method 2" described by:

Specific applications of the above formulae to the noncentral beta distribution can be found in:

Of these, the Posten reference provides the most complete overview, and includes the modification starting iteration at $\lambda/2$.

The main difference between this implementation and the above references is the direct computation of the complement when most efficient to do so, and the accumulation of the sum to -1 rather than subtracting the result from 1 at the end: this can substantially reduce the number of iterations required when the result is near 1.

The PDF is computed using the methodology of Benton and Krishnamoorthy and the relation:

$$f(x; \alpha, \beta; \lambda) = \sum_{i=0}^{\infty} P\left(i; \frac{\lambda}{2}\right) I_x'(\alpha + i, \beta)$$

Quantiles are computed using a specially modified version of `bracket_and_solve_root`, starting the search for the root at the mean of the distribution. (A Cornish-Fisher type expansion was also tried, but while this gets quite close to the root in many cases, when it is wrong it tends to introduce quite pathological behaviour: more investigation in this area is probably warranted).

Noncentral Chi-Squared Distribution

```cpp
#include <boost/math/distributions/non_central_chi_squared.hpp>
```
namespace boost { namespace math {

template <class RealType = double,
 class Policy = policies::policy<> >
class non_central_chisquare_distribution;

typedef non_central_chisquare_distribution<> non_central_chisquare;

template <class RealType, class Policy>
 class non_central_chisquare_distribution
{
public:
 typedef RealType value_type;
 typedef Policy policy_type;

 // Constructor:
 non_central_chisquare_distribution(RealType v, RealType lambda);

 // Accessor to degrees of freedom parameter v:
 RealType degrees_of_freedom()const;

 // Accessor to non centrality parameter lambda:
 RealType non_centrality()const;

 // Parameter finders:
 static RealType find_degrees_of_freedom(RealType lambda, RealType x, RealType p);
 template <class A, class B, class C>
 static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c);

 static RealType find_non_centrality(RealType v, RealType x, RealType p);
 template <class A, class B, class C>
 static RealType find_non_centrality(const complemented3_type<A,B,C>& c);
};
}

The noncentral chi-squared distribution is a generalization of the Chi Squared Distribution. If \(X_i \) are \(\nu \) independent, normally distributed random variables with means \(\mu_i \) and variances \(\sigma_i^2 \), then the random variable

\[
\sum_{i=1}^{k} \left(\frac{X_i}{\sigma_i} \right)^2
\]

is distributed according to the noncentral chi-squared distribution.

The noncentral chi-squared distribution has two parameters: \(\nu \) which specifies the number of degrees of freedom (i.e. the number of \(X_i \)), and \(\lambda \) which is related to the mean of the random variables \(X_i \) by:

\[
\lambda = \sum_{i=1}^{k} \left(\frac{\mu_i}{\sigma_i} \right)^2
\]

(Note that some references define \(\lambda \) as one half of the above sum).

This leads to a PDF of:

\[
f(x; \nu, \lambda) = \sum_{i=0}^{\infty} e^{-\frac{\lambda}{2}} \left(\frac{\lambda}{2} \right)^{\nu/2} f(x; \nu + 2i) = \frac{1}{\sqrt{\lambda}} e^{-\frac{\lambda + x}{2}} x^{\nu/2 - 1} I_{\nu/2 - 1}(\sqrt{\lambda}x)
\]
where \(f(x;k) \) is the central chi-squared distribution PDF, and \(I_v(x) \) is a modified Bessel function of the first kind.

The following graph illustrates how the distribution changes for different values of \(\lambda \):

Member Functions

```cpp
non_central_chi_squared_distribution(RealType v, RealType lambda);
```

Constructs a Chi-Squared distribution with \(v \) degrees of freedom and non-centrality parameter \(\lambda \).

Requires \(v > 0 \) and \(\lambda \geq 0 \), otherwise calls domain_error.

```cpp
RealType degrees_of_freedom()const;
```

Returns the parameter \(v \) from which this object was constructed.

```cpp
RealType non_centrality()const;
```

Returns the parameter \(\lambda \) from which this object was constructed.

```cpp
static RealType find_degrees_of_freedom(RealType lambda, RealType x, RealType p);
```

This function returns the number of degrees of freedom \(v \) such that:
\[
\text{cdf}(\text{non_central_chi_squared}<\text{RealType, Policy}>(v, \lambda), x) = p
\]

```cpp
template <class A, class B, class C>
static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c);
```

When called with argument `boost::math::complement(lambda, x, q)` this function returns the number of degrees of freedom \(v \) such that:
\[
\text{cdf}(\text{complement}(\text{non_central_chi_squared}<\text{RealType, Policy}>(v, \lambda)), x)) = q
\]
static RealType find_non_centrality(RealType v, RealType x, RealType p);

This function returns the non centrality parameter \(\lambda \) such that:
\[
cdf(\text{non-central chi-squared}<\text{RealType}, \text{Policy}>(v, \lambda), x) = p
\]

When called with argument \(\text{boost::math::complement}(v, x, q) \) this function returns the non centrality parameter \(\lambda \) such that:
\[
cdf(\text{complement(\text{non-central chi-squared}<\text{RealType}, \text{Policy}>(v, \lambda), x))) = q
\]

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is \([0, +\infty]\).

Examples

There is a worked example for the noncentral chi-squared distribution.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating-point types, along with comparisons to the R-2.5.1 Math library. Unless otherwise specified, any floating-point type that is narrower than the one shown will have effectively zero error.

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>(v, \lambda < 200)</th>
<th>(v, \lambda > 200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=50 Mean=9.9</td>
<td>Peak=9780 Mean=718</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Peak=685 Mean=109</td>
<td>R Peak=3x10^8 Mean=2x10^7</td>
</tr>
<tr>
<td>64</td>
<td>RedHat Linux IA32, gcc-4.1.1</td>
<td>Peak=270 Mean=27</td>
<td>Peak=7900 Mean=900</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4.4</td>
<td>Peak=107 Mean=17</td>
<td>Peak=5000 Mean=630</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=270 Mean=20</td>
<td>Peak=4600 Mean=560</td>
</tr>
</tbody>
</table>

Error rates for the complement of the CDF and for the quantile functions are broadly similar. Special mention should go to the mode function: there is no closed form for this function, so it is evaluated numerically by finding the maxima of the PDF: in principal this can not produce an accuracy greater than the square root of the machine epsilon.

Tests

There are two sets of test data used to verify this implementation: firstly we can compare with published data, for example with Table 6 of "Self-Validating Computations of Probabilities for Selected Central and Noncentral Univariate Probability Functions", Morgan C. Wang and William J. Kennedy, Journal of the American Statistical Association, Vol. 89, No. 427. (Sep., 1994), pp. 878-887. Secondly, we have tables of test data, computed with this implementation and using interval arithmetic - this data should be accurate to at least 50 decimal digits - and is the used for our accuracy tests.
Implementation

The CDF and its complement are evaluated as follows:

First we determine which of the two values (the CDF or its complement) is likely to be the smaller: for this we can use the relation due to Temme (see "Asymptotic and Numerical Aspects of the Noncentral Chi-Square Distribution", N. M. Temme, Computers Math. Applic. Vol 25, No. 5, 55-63, 1993) that:

\[F(\nu, \lambda; \nu + \lambda) \approx 0.5 \]

and so compute the CDF when the random variable is less than \(\nu + \lambda \), and its complement when the random variable is greater than \(\nu + \lambda \). If necessary the computed result is then subtracted from 1 to give the desired result (the CDF or its complement).

For small values of the non centrality parameter, the CDF is computed using the method of Ding (see "Algorithm AS 275: Computing the Non-Central #2 Distribution Function", Cherng G. Ding, Applied Statistics, Vol. 41, No. 2. (1992), pp. 478-482). This uses the following series representation:

\[
P(x; \nu, \lambda) = \sum_{i=0}^{\infty} s_i t_i
\]

\[
s_0 = u_0 = e^{-\frac{x^2}{2}}, \quad s_i = s_{i-1} + u_i, \quad u_i = u_{i-1} \frac{\lambda^2}{2i}
\]

\[
t_0 = \frac{1}{i!(\frac{\nu}{2} + 1)} \left(\frac{\nu}{2} \right)^i e^{-\frac{x^2}{2}}, \quad t_i = t_{i-1} \frac{x}{\nu + 2i}
\]

which requires just one call to \texttt{gamma_p_derivative} with the subsequent terms being computed by recursion as shown above.

For larger values of the non-centrality parameter, Ding’s method can take an unreasonable number of terms before convergence is achieved. Furthermore, the largest term is not the first term, so in extreme cases the first term may be zero, leading to a zero result, even though the true value may be non-zero.

Therefore, when the non-centrality parameter is greater than 200, the method due to Krishnamoorthy (see "Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient", Denise Benton and K. Krishnamoorthy, Computational Statistics & Data Analysis, 43, (2003), 249-267) is used.

This method uses the well known sum:

\[
P(x; \nu, \lambda) = \sum_{i=0}^{\infty} \frac{e^{-\frac{x^2}{2}} \left(\frac{\lambda^2}{2} \right)^i}{i!} P_{\lambda^2/2}(\nu + i)
\]

Where \(P_{\lambda^2}(x) \) is the incomplete gamma function.

The method starts at the \(\lambda \)th term, which is where the Poisson weighting function achieves its maximum value, although this is not necessarily the largest overall term. Subsequent terms are calculated via the normal recurrence relations for the incomplete gamma function, and iteration proceeds both forwards and backwards until sufficient precision has been achieved. It should be noted that recurrence in the forwards direction of \(P_{\lambda^2}(x) \) is numerically unstable. However, since we always start \textit{after} the largest term in the series, numeric instability is introduced more slowly than the series converges.

Computation of the complement of the CDF uses an extension of Krishnamoorthy's method, given that:

\[
1 - P(x; \nu, \lambda) = \sum_{i=0}^{\infty} \frac{e^{-\frac{x^2}{2}} \left(\frac{\lambda^2}{2} \right)^i}{i!} Q_{\lambda^2/2}(\nu + i)
\]
we can again start at the λ'th term and proceed in both directions from there until the required precision is achieved. This time it is backwards recursion on the incomplete gamma function $Q_{\lambda}(x)$ which is unstable. However, as long as we start well before the largest term, this is not an issue in practice.

The PDF is computed directly using the relation:

$$f(x; \nu, \lambda) = \sum_{i=0}^{\infty} e^{-\lambda^2 / 2} \left(\frac{\lambda}{2}\right)^i \frac{1}{i!} f(x; \nu + 2i) = \frac{1}{2} e^{\frac{(x+\lambda)^2}{2}} \left(\frac{x}{\lambda}\right)^{\nu/2 - 1} I_{\nu/2 - 1}(\sqrt{2}\lambda x)$$

Where $f(x; \nu)$ is the PDF of the central Chi Squared Distribution and $I_{\nu}(x)$ is a modified Bessel function, see cyl_bessel_i. For small values of the non-centrality parameter the relation in terms of cyl_bessel_i is used. However, this method fails for large values of the non-centrality parameter, so in that case the infinite sum is evaluated using the method of Benton and Krishnamoorthy, and the usual recurrence relations for successive terms.

The quantile functions are computed by numeric inversion of the CDF.

There is no closed form for the mode of the noncentral chi-squared distribution: it is computed numerically by finding the maximum of the PDF. Likewise, the median is computed numerically via the quantile.

The remaining non-member functions use the following formulas:

$$\text{mean} = \nu + \lambda$$
$$\text{variance} = 2(\nu + 2\lambda)$$
$$\text{skewness} = \frac{\nu^2(\nu + 3\lambda)}{(\nu + 2\lambda)^{3/2}}$$

Some analytic properties of noncentral distributions (particularly unimodality, and monotonicity of their modes) are surveyed and summarized by:

Noncentral F Distribution

```c++
#include <boost/math/distributions/non_central_f.hpp>
```
The noncentral F distribution is a generalization of the Fisher F Distribution. It is defined as the ratio

$$ F = \frac{X}{v_1} / \frac{Y}{v_2} $$

where X is a noncentral χ^2 random variable with v_1 degrees of freedom and non-centrality parameter λ, and Y is a central χ^2 random variable with v_2 degrees of freedom.

This gives the following PDF:

$$ f(x; v_1, v_2; \lambda) = e^{-\frac{\lambda}{2}} \frac{\left(\frac{\gamma(v_1)}{\gamma(v_2)}\right)}{v_1^{\frac{v_1}{2}} v_2^{\frac{v_2}{2}} x^{\frac{v_1}{2} - 1}} \frac{(v_1 + v_2)^{\frac{v_1}{2} + 1}}{2^{\frac{v_1}{2} - 1}} \frac{L_{\frac{v_1}{2}} \left(-\frac{\lambda v_1 x}{2(v_2 + v_1 x)}\right)}{B\left(\frac{v_1}{2}, \frac{v_2}{2}\right) \Gamma\left(\frac{1}{2}(v_1 + v_2)\right)} $$

where $L_a^b(c)$ is a generalised Laguerre polynomial and $B(a,b)$ is the beta function, or

$$ f(x; v_1, v_2; \lambda) = \sum_{k=0}^{\infty} \frac{e^{-\frac{\lambda}{2}} \left(\frac{\gamma(v_1)}{\gamma(v_2)}\right)}{B\left(\frac{v_2}{2}, \frac{v_1}{2}\right)^k k!} \frac{(v_1 + v_2)^{\frac{v_1}{2} + 1}}{2^{\frac{v_1}{2} - 1}} \frac{L_{\frac{v_1}{2}} \left(-\frac{\lambda v_1 x}{2(v_2 + v_1 x)}\right)}{B\left(\frac{v_1}{2}, \frac{v_2}{2}\right) \Gamma\left(\frac{1}{2}(v_1 + v_2)\right)} $$

The following graph illustrates how the distribution changes for different values of λ:

188
Member Functions

```cpp
class non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
```

Constructs a non-central beta distribution with parameters \(v_1\) and \(v_2\) and non-centrality parameter \(\lambda\).

Requires \(v_1 > 0\), \(v_2 > 0\) and \(\lambda \geq 0\), otherwise calls `domain_error`.

```cpp
RealType degrees_of_freedom1() const;
```

Returns the parameter \(v_1\) from which this object was constructed.

```cpp
RealType degrees_of_freedom2() const;
```

Returns the parameter \(v_2\) from which this object was constructed.

```cpp
RealType non_centrality() const;
```

Returns the non-centrality parameter \(\lambda\) from which this object was constructed.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is \([0, +\infty]\).

Accuracy

This distribution is implemented in terms of the Noncentral Beta Distribution: refer to that distribution for accuracy data.
Tests
Since this distribution is implemented by adapting another distribution, the tests consist of basic sanity checks computed by the R-2.5.1 Math library statistical package and its pbeta and dbeta functions.

Implementation
In the following table v_1 and v_2 are the first and second degrees of freedom parameters of the distribution, λ is the non-centrality parameter, x is the random variate, p is the probability, and $q = 1-p$.
<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Implemented in terms of the non-central beta PDF using the relation:</td>
</tr>
<tr>
<td></td>
<td>[f(x;v1,v2;\lambda) = (v1/v2) / ((1+y)^*(1+y)) * g(y/(1+y);v1/2,v2/2;\lambda)]</td>
</tr>
<tr>
<td></td>
<td>where (g(x; a, b; \lambda)) is the non central beta PDF, and:</td>
</tr>
<tr>
<td></td>
<td>(y = x * v1 / v2)</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation:</td>
</tr>
<tr>
<td></td>
<td>[p = B_y(v1/2, v2/2; \lambda)]</td>
</tr>
<tr>
<td></td>
<td>where (B_x(a, b; \lambda)) is the noncentral beta distribution CDF and</td>
</tr>
<tr>
<td></td>
<td>(y = x * v1 / v2)</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation:</td>
</tr>
<tr>
<td></td>
<td>[q = 1 - B_y(v1/2, v2/2; \lambda)]</td>
</tr>
<tr>
<td></td>
<td>where (1 - B_x(a, b; \lambda)) is the complement of the noncentral beta</td>
</tr>
<tr>
<td></td>
<td>distribution CDF and (y = x * v1 / v2)</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation:</td>
</tr>
<tr>
<td></td>
<td>[x = (bx / (1-bx)) * (v1 / v2)]</td>
</tr>
<tr>
<td></td>
<td>where (bx = Q_p^{-1}(v1/2, v2/2; \lambda))</td>
</tr>
<tr>
<td></td>
<td>and (Q_p^{-1}(v1/2, v2/2; \lambda)) is the noncentral beta quantile.</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation:</td>
</tr>
<tr>
<td>from the complement</td>
<td>[x = (bx / (1-bx)) * (v1 / v2)]</td>
</tr>
<tr>
<td></td>
<td>where (bx = QC_q^{-1}(v1/2, v2/2; \lambda))</td>
</tr>
<tr>
<td></td>
<td>and (QC_q^{-1}(v1/2, v2/2; \lambda)) is the noncentral beta quantile from the</td>
</tr>
<tr>
<td></td>
<td>complement.</td>
</tr>
<tr>
<td>mean</td>
<td>(v2 * (v1 + 1) / (v1 * (v2 - 2)))</td>
</tr>
<tr>
<td>mode</td>
<td>By numeric maximalisation of the PDF.</td>
</tr>
<tr>
<td>Function</td>
<td>Implementation Notes</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>skewness</td>
<td>Refer to, Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource., and to the Mathematica documentation</td>
</tr>
<tr>
<td>kurtosis and kurtosis excess</td>
<td>Refer to, Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource., and to the Mathematica documentation</td>
</tr>
</tbody>
</table>

Some analytic properties of noncentral distributions (particularly unimodality, and monotonicity of their modes) are surveyed and summarized by:

Noncentral T Distribution

```cpp
#include <boost/math/distributions/non_central_t.hpp>

namespace boost { namespace math {

template <class RealType = double,  
  class Policy = policies::policy<> >

class non_central_t_distribution;

typedef non_central_t_distribution<> non_central_t;

template <class RealType, class Policy>

class non_central_t_distribution
{
  public:
    typedef RealType  value_type;
    typedef Policy    policy_type;

    // Constructor:
    non_central_t_distribution(RealType v, RealType delta);

    // Accessor to degrees_of_freedom parameter v:
    RealType degrees_of_freedom()const;

    // Accessor to non-centrality parameter lambda:
    RealType non_centrality()const;
};
}; // namespaces
```

The noncentral T distribution is a generalization of the Students t Distribution. Let X have a normal distribution with mean δ and variance 1, and let S^2 have a chi-squared distribution with degrees of freedom v. Assume that X and S^2 are independent. The distribution of $t(v;\delta) = X/S$ is called a noncentral t distribution with degrees of freedom v and noncentrality parameter δ.

This gives the following PDF:

$$f(x; v; \delta) = \frac{\sqrt{\delta} \Gamma\left(\frac{v}{2}\right)}{\sqrt{\Gamma\left(\frac{v}{2} + 1\right)}} \frac{\sqrt{\frac{\delta^2 + x^2}{2}}}{\left(v + x^2\right)^{\frac{v}{2}} \Gamma\left(\frac{v}{2} + 1\right)} \cdot \frac{1}{\sqrt{\Gamma\left(\frac{v}{2}\right)}} F\left(\frac{\frac{v}{2} + 1}{\frac{v}{2} + \frac{1}{2}}; \frac{\frac{3}{2}}{2\left(v + x^2\right)}\right) + \frac{1}{\sqrt{\Gamma\left(\frac{v}{2}\right)}} F\left(\frac{\frac{v}{2} + 1}{\frac{v}{2} + \frac{1}{2}}; \frac{\frac{3}{2}}{2\left(v + x^2\right)}\right)$$
where \(_1F_1(a;b;x) \) is a confluent hypergeometric function.

The following graph illustrates how the distribution changes for different values of \(\delta \):

![Non Central T PDF](image)

Member Functions

```cpp
non_central_t_distribution(RealType v, RealType lambda);
```

Constructs a non-central t distribution with degrees of freedom parameter \(v \) and non-centrality parameter \(\delta \).

Requires \(v > 0 \) and finite \(\delta \), otherwise calls `domain_error`.

```cpp
RealType degrees_of_freedom() const;
```

Returns the parameter \(v \) from which this object was constructed.

```cpp
RealType non_centrality() const;
```

Returns the non-centrality parameter \(\delta \) from which this object was constructed.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is \([-\infty, +\infty]\).

Accuracy

The following table shows the peak errors (in units of `epsilon`) found on various platforms with various floating-point types. Unless otherwise specified, any floating-point type that is narrower than the one shown will have effectively zero error.
Table 15. Errors In CDF of the Noncentral T Distribution

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>(v, \delta < 600)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=120 Mean=26</td>
</tr>
<tr>
<td>64</td>
<td>RedHat Linux IA32, gcc-4.1.1</td>
<td>Peak=121 Mean=26</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4.4</td>
<td>Peak=122 Mean=25</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=115 Mean=24</td>
</tr>
</tbody>
</table>

Caution

The complexity of the current algorithm is dependent upon \(\delta^2 \): consequently the time taken to evaluate the CDF increases rapidly for \(\delta > 500 \), likewise the accuracy decreases rapidly for very large \(\delta \).

Accuracy for the quantile and PDF functions should be broadly similar, note however that the mode is determined numerically and can not in principal be more accurate than the square root of machine epsilon.

Tests

There are two sets of tests of this distribution: basic sanity checks compare this implementation to the test values given in "Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient." Denise Benton, K. Krishnamoorthy, Computational Statistics & Data Analysis 43 (2003) 249-267. While accuracy checks use test data computed with this implementation and arbitrary precision interval arithmetic: this test data is believed to be accurate to at least 50 decimal places.

Implementation

This uses the following formula for the CDF:

\[
P(t; v; \delta) = \Phi(-\delta) + \frac{1}{2} \sum_{i=0}^{\infty} \left(P_i I_x(i + \frac{1}{2}, \frac{v}{2}) + \frac{\delta}{\sqrt{2\pi}} Q_i I_x(i + 1, \frac{v}{2}) \right)
\]

\[
P_i = e^{-\frac{\delta^2}{2}} \left(\frac{\delta^2}{2} \right)^i \frac{1}{i!}, \quad Q_i = e^{-\frac{\delta^2}{2}} \left(\frac{\delta^2}{2} \right)^i \frac{1}{\Gamma(i + \frac{3}{2})}, \quad x = \frac{t^2}{v + t^2}
\]

Where \(I_x(a,b) \) is the incomplete beta function, and \(\Phi(x) \) is the normal CDF at \(x \).

Iteration starts at the largest of the Poisson weighting terms (at \(i = \delta^2 / 2 \)) and then proceeds in both directions as per Benton and Krishnamoorthy's paper.

Alternatively, by considering what happens when \(t = \infty \), we have \(x = 1 \), and therefore \(I_x(a,b) = 1 \) and:

\[
P(\infty; v; \delta) = 1 = \Phi(-\delta) + \frac{1}{2} \sum_{i=0}^{\infty} \left(P_i + \frac{\delta}{\sqrt{2}} Q_i \right)
\]

From this we can easily show that:
\[1 - P(t; \nu; \delta) = \frac{1}{2} \sum_{i=0}^{\infty} \left(P_i I_\nu \left(\frac{\nu}{2}, i + \frac{1}{2} \right) + \frac{\delta}{\sqrt{2}} Q_i I_\nu \left(\frac{\nu}{2}, i + 1 \right) \right) ; \quad y = 1 - x = \frac{\nu}{\nu + t^2} \]

and therefore we have a means to compute either the probability or its complement directly without the risk of cancellation error. The crossover criterion for choosing whether to calculate the CDF or its complement is the same as for the Noncentral Beta Distribution.

The PDF can be computed by a very similar method using:

\[f(t; \nu; \delta) = \frac{\nu t}{\nu^2 + 2 \nu t^2 + t^4} \sum_{i=0}^{\infty} \left(P_i I'_{\nu} \left(i + \frac{1}{2}, \frac{\nu}{2} \right) + \frac{\delta}{\sqrt{2}} Q_i I'_{\nu} \left(i + 1, \frac{\nu}{2} \right) \right) \]

Where \(I'_{\nu}(a,b) \) is the derivative of the incomplete beta function.

The quantile is calculated via the usual derivative-free root-finding techniques, with the initial guess taken as the quantile of a normal approximation to the noncentral \(T \).

There is no closed form for the mode, so this is computed via functional maximisation of the PDF.

The remaining functions (mean, variance etc) are implemented using the formulas given in Weisstein, Eric W. "Noncentral Student’s t-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html and in the Mathematica documentation.

Some analytic properties of noncentral distributions (particularly unimodality, and monotonicity of their modes) are surveyed and summarized by:

Normal (Gaussian) Distribution

```cpp
#include <boost/math/distributions/normal.hpp>
```
The normal distribution is probably the most well known statistical distribution: it is also known as the Gaussian Distribution. A normal distribution with mean zero and standard deviation one is known as the Standard Normal Distribution.

Given mean μ and standard deviation σ it has the PDF:

$$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The variation the PDF with its parameters is illustrated in the following graph:
Member Functions

```cpp
class normal_distribution : public distribution<RealType> {
public:
  explicit normal_distribution(RealType mean = 0, RealType sd = 1);

  RealType mean() const;
  RealType location() const;
  RealType standard_deviation() const;
  RealType scale() const;

private:
  RealType _mean, _sd;
};
```

Constructs a normal distribution with mean \(mean\) and standard deviation \(sd\).

Requires \(sd > 0\), otherwise `domain_error` is called.

```cpp
// Example
normal_distribution dist(5.0, 2.0);
```

both return the `mean` of this distribution.

```cpp
// Example
RealType mean = dist.mean();
```

both return the `standard deviation` of this distribution. (Redundant location and scale function are provided to match other similar distributions, allowing the functions `find_location` and `find_scale` to be used generically).

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: `Cumulative Distribution Function`, `Probability Density Function`, `Quantile`, `Hazard Function`, `Cumulative Hazard Function`, `mean`, `median`, `mode`, `variance`, `standard deviation`, `skewness`, `kurtosis`, `kurtosis_excess`, `range` and `support`.

The domain of the random variable is \([-\text{max_value}], +[\text{min_value}]\]. However, the pdf of \(+\infty\) and \(-\infty\) is also supported, and cdf at \(-\infty\) = 0, cdf at \(+\infty\) = 1, and complement cdf \(-\infty\) = 1 and \(+\infty\) = 0, if `RealType` permits.

Accuracy

The normal distribution is implemented in terms of the `error function`, and as such should have very low error rates.

Implementation

In the following table \(m\) is the mean of the distribution, and \(s\) is its standard deviation.
Function Implementation Notes

<table>
<thead>
<tr>
<th>Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: $pdf = \frac{e^{-(x-m)^2/(2s^2)}}{(s \sqrt{2\pi})}$</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: $p = 0.5 \ast \text{erfc}(-(x-m)/(s\sqrt{2}))$</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: $q = 0.5 \ast \text{erfc}((x-m)/(s\sqrt{2}))$</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: $x = m - s \ast \sqrt{2} \ast \text{erfc}^{-1}(2p)$</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: $x = m + s \ast \sqrt{2} \ast \text{erfc}^{-1}(2p)$</td>
</tr>
<tr>
<td>mean and standard deviation</td>
<td>The same as dist.mean() and dist.standard_deviation()</td>
</tr>
<tr>
<td>mode</td>
<td>The same as the mean.</td>
</tr>
<tr>
<td>skewness</td>
<td>0</td>
</tr>
<tr>
<td>kurtosis</td>
<td>3</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>0</td>
</tr>
</tbody>
</table>

Pareto Distribution

The Pareto distribution is a continuous distribution with the probability density function (pdf):

$$f(x; \alpha, \beta) = \frac{\alpha \beta^\alpha}{x^{\alpha+1}}$$

For shape parameter $\alpha > 0$, and scale parameter $\beta > 0$. If $x < \beta$, the pdf is zero.

The Pareto distribution often describes the larger compared to the smaller. A classic example is that 80% of the wealth is owned by 20% of the population.

The following graph illustrates how the PDF varies with the scale parameter β:

```cpp
#include <boost/math/distributions/pareto.hpp>

namespace boost { namespace math{

template <class RealType = double,
           class Policy = policies::policy<> >
class pareto_distribution;

typedef pareto_distribution<> pareto;

template <class RealType, class Policy>
class pareto_distribution
{
    typedef RealType value_type;
    // Constructor:
    pareto_distribution(RealType scale = 1, RealType shape = 1)
    // Accessors:
    RealType scale() const;
    RealType shape() const;
};
}} // namespaces
```
And this graph illustrates how the PDF varies with the shape parameter α:

Related distributions

Member Functions

```cpp
pareto_distribution(RealType scale = 1, RealType shape = 1);
```

Constructs a `pareto_distribution` with shape `shape` and scale `scale`.

Requires that the `shape` and `scale` parameters are both greater than zero, otherwise calls `domain_error`.
RealType scale() const;

Returns the *scale* parameter of this distribution.

RealType shape() const;

Returns the *shape* parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis excess, range and support.

The supported domain of the random variable is $[\text{scale}, \infty)$.

Accuracy

The Pareto distribution is implemented in terms of the standard library `exp` functions plus `expm1` and so should have very small errors, usually only a few epsilon.

If probability is near to unity (or the complement of a probability near zero) see also why complements?.

Implementation

In the following table α is the shape parameter of the distribution, and β is its scale parameter, x is the random variate, p is the probability and its complement $q = 1-p$.

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: pdf $p = \alpha \beta^\alpha / x^{\alpha + 1}$</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: cdf $p = 1 - (\beta / x)^\alpha$</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: $q = 1 - p = -(\beta / x)^\alpha$</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: $x = \beta / (1 - p)^{1/\alpha}$</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: $x = \beta / (q)^{1/\alpha}$</td>
</tr>
<tr>
<td>mean</td>
<td>$\alpha \beta / (\beta - 1)$</td>
</tr>
<tr>
<td>variance</td>
<td>$\beta \alpha^2 / (\beta - 1)^2 (\beta - 2)$</td>
</tr>
<tr>
<td>mode</td>
<td>α</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>Refer to Weisstein, Eric W. "pareto Distribution." From MathWorld--A Wolfram Web Resource.</td>
</tr>
</tbody>
</table>

References

- Pareto Distribution
The Poisson distribution is a well-known statistical discrete distribution. It expresses the probability of a number of events (or failures, arrivals, occurrences ...) occurring in a fixed period of time, provided these events occur with a known mean rate \(\lambda \) (events/time), and are independent of the time since the last event.

The distribution was discovered by Siméon-Denis Poisson (1781 to 1840).

It has the Probability Mass Function:

\[
f(k; \lambda) = \frac{e^{-\lambda} \lambda^k}{k!}
\]

for \(k \) events, with an expected number of events \(\lambda \).

The following graph illustrates how the PDF varies with the parameter \(\lambda \):
Caution

The Poisson distribution is a discrete distribution: internally functions like the \(cdf \) and \(pdf \) are treated "as if" they are continuous functions, but in reality the results returned from these functions only have meaning if an integer value is provided for the random variate argument.

The quantile function will by default return an integer result that has been rounded outwards. That is to say lower quantiles (where the probability is less than 0.5) are rounded downward, and upper quantiles (where the probability is greater than 0.5) are rounded upwards. This behaviour ensures that if an X\% quantile is requested, then at least the requested coverage will be present in the central region, and no more than the requested coverage will be present in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete Distributions before using the quantile function on the Poisson distribution. The reference docs describe how to change the rounding policy for these distributions.

Member Functions

\[
\text{poisson_distribution(RealType mean = 1);} \\
\]

Constructs a poisson distribution with mean \(\text{mean} \).

\[
\text{RealType mean() const;} \\
\]

Returns the \(\text{mean} \) of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: \(\text{Cumulative Distribution Function} \), \(\text{Probability Density Function} \), \(\text{Quantile} \), \(\text{Hazard Function} \), \(\text{Cumulative Hazard Function} \), mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is \([0, \infty) \).
Accuracy

The Poisson distribution is implemented in terms of the incomplete gamma functions \texttt{gamma_p} and \texttt{gamma_q} and as such should have low error rates: but refer to the documentation of those functions for more information. The quantile and its complement use the inverse gamma functions and are therefore probably slightly less accurate: this is because the inverse gamma functions are implemented using an iterative method with a lower tolerance to avoid excessive computation.

Implementation

In the following table λ is the mean of the distribution, k is the random variable, p is the probability and $q = 1-p$.

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: pdf = $e^{-\lambda} \frac{\lambda^k}{k!}$</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: $p = \Gamma(k+1, \lambda) / k! = \texttt{gamma_q(k+1, \lambda)}$</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: $q = \texttt{gamma_p(k+1, \lambda)}$</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: $k = \texttt{gamma_q_inva(\lambda, p)} - 1$</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: $k = \texttt{gamma_p_inva(\lambda, q)} - 1$</td>
</tr>
<tr>
<td>mean</td>
<td>λ</td>
</tr>
<tr>
<td>mode</td>
<td>floor (λ) or λ</td>
</tr>
<tr>
<td>skewness</td>
<td>$1/\sqrt{\lambda}$</td>
</tr>
<tr>
<td>kurtosis</td>
<td>$3 + 1/\lambda$</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>$1/\lambda$</td>
</tr>
</tbody>
</table>

Rayleigh Distribution

```cpp
#include <boost/math/distributions/rayleigh.hpp>
```
namespace boost{ namespace math{

template <class RealType = double,
 class Policy = policies::policy<> >
class rayleigh_distribution;

typedef rayleigh_distribution<> rayleigh;

template <class RealType, class Policy>
class rayleigh_distribution
{
 public:
 typedef RealType value_type;
 typedef Policy policy_type;
 // Construct:
 rayleigh_distribution(RealType sigma = 1)
 // Accessors:
 RealType sigma()const;

};
} // namespaces

The Rayleigh distribution is a continuous distribution with the probability density function:

\[f(x; \sigma) = x \cdot \exp\left(-\frac{x^2}{2\sigma^2}\right) / \sigma^2 \]

For \(\sigma \) parameter \(\sigma > 0 \), and \(x > 0 \).

The Rayleigh distribution is often used where two orthogonal components have an absolute value, for example, wind velocity and direction may be combined to yield a wind speed, or real and imaginary components may have absolute values that are Rayleigh distributed.

The following graph illustrates how the Probability density Function(pdf) varies with the shape parameter \(\sigma \):

Rayleigh Distribution PDF

and the Cumulative Distribution Function (cdf)
Related distributions

The absolute value of two independent normal distributions X and Y, $\sqrt{X^2 + Y^2}$, is a Rayleigh distribution.

The Chi, Rice and Weibull distributions are generalizations of the Rayleigh distribution.

Member Functions

```cpp
rayleigh_distribution(RealType sigma = 1);
```

Constructs a Rayleigh distribution with σ `sigma`.

Requires that the σ parameter is greater than zero, otherwise calls `domain_error`.

```cpp
RealType sigma() const;
```

Returns the `sigma` parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is $[0, \text{max_value}]$.

Accuracy

The Rayleigh distribution is implemented in terms of the standard library `sqrt` and `exp` and as such should have very low error rates. Some constants such as skewness and kurtosis were calculated using NTL RR type with 150-bit accuracy, about 50 decimal digits.

Implementation

In the following table σ is the sigma parameter of the distribution, x is the random variate, p is the probability and $q = 1 - p$.

Math Toolkit

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/
<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: $pdf = x \times \exp(-x^2/2)\sigma^2$</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: $p = 1 - \exp(-x^2/2)\sigma^2 = -\expm1(-x^2/2)\sigma^2$</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: $q = \exp(-x^2/2) * \sigma^2$</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: $x = \sqrt(-2 * \sigma^2) * \log(1 - p)) = \sqrt(-2 * \sigma^2) * \log1p(-p))$</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: $x = \sqrt(-2 * \sigma^2) * \log(q))$</td>
</tr>
<tr>
<td>mean</td>
<td>$\sigma * \sqrt(\pi/2)$</td>
</tr>
<tr>
<td>variance</td>
<td>$\sigma^2 * (4 - \pi/2)$</td>
</tr>
<tr>
<td>mode</td>
<td>σ</td>
</tr>
</tbody>
</table>

References

Students t Distribution

```cpp
#include <boost/math/distributions/students_t.hpp>
```
A statistical distribution published by William Gosset in 1908. His employer, Guinness Breweries, required him to publish under a pseudonym, so he chose "Student". Given N independent measurements, let

\[t = \frac{\mu - M}{\frac{s}{\sqrt{N}}} \]

where \(M \) is the population mean, \(\mu \) is the sample mean, and \(s \) is the sample variance.

Student's t-distribution is defined as the distribution of the random variable \(t \) which is - very loosely - the "best" that we can do not knowing the true standard deviation of the sample. It has the PDF:

\[
 f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi} \Gamma\left(\frac{\nu}{2}\right)} \frac{\nu^{\frac{\nu}{2}}(1 + \frac{x^2}{\nu})^{-\frac{\nu+1}{2}}}{2}\]

The Student's t-distribution takes a single parameter: the number of degrees of freedom of the sample. When the degrees of freedom is one then this distribution is the same as the Cauchy-distribution. As the number of degrees of freedom tends towards infinity, then this distribution approaches the normal-distribution. The following graph illustrates how the PDF varies with the degrees of freedom \(\nu \):
Member Functions

```cpp
students_t_distribution(const RealType& v);
```

Constructs a Student's t-distribution with \(v \) degrees of freedom.

Requires \(v > 0 \), otherwise calls `domain_error`. Note that non-integral degrees of freedom are supported, and meaningful under certain circumstances.

```cpp
RealType degrees_of_freedom() const;
```

Returns the number of degrees of freedom of this distribution.

```cpp
static RealType find_degrees_of_freedom(
    RealType difference_from_mean,
    RealType alpha,
    RealType beta,
    RealType sd,
    RealType hint = 100);
```

Returns the number of degrees of freedom required to observe a significant result in the Student's t test when the mean differs from the "true" mean by `difference_from_mean`.

- `difference_from_mean`: The difference between the true mean and the sample mean that we wish to show is significant.
- `alpha`: The maximum acceptable probability of rejecting the null hypothesis when it is in fact true.
- `beta`: The maximum acceptable probability of failing to reject the null hypothesis when it is in fact false.
- `sd`: The sample standard deviation.
- `hint`: A hint for the location to start looking for the result, a good choice for this would be the sample size of a previous borderline Student's t test.
For more information on this function see the NIST Engineering Statistics Handbook.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is \([-\infty, +\infty]\).

Examples

Various worked examples are available illustrating the use of the Student's t distribution.

Accuracy

The normal distribution is implemented in terms of the incomplete beta function and it's inverses, refer to accuracy data on those functions for more information.

Implementation

In the following table \(v\) is the degrees of freedom of the distribution, \(t\) is the random variate, \(p\) is the probability and \(q = 1 - p\).
<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: $pdf = \frac{(v / (v + t^2))^{(1+v)/2}}{(v + t^2)} / (\sqrt{v} \ast beta(v/2, 0.5))$</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relations:</td>
</tr>
<tr>
<td></td>
<td>$p = 1 - z$ if $t > 0$</td>
</tr>
<tr>
<td></td>
<td>$p = z$ otherwise</td>
</tr>
<tr>
<td></td>
<td>where z is given by:</td>
</tr>
<tr>
<td></td>
<td>$ibeta(v / 2, 0.5, v / (v + t^2))/2$ if $v < 2t^2$</td>
</tr>
<tr>
<td></td>
<td>$ibetac(0.5, v / 2, t^2 / (v + t^2))/2$ otherwise</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: $q = cdf(-t)$</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: $t = sign(p - 0.5) \ast \sqrt{v \ast y / x}$</td>
</tr>
<tr>
<td></td>
<td>where:</td>
</tr>
<tr>
<td></td>
<td>$x = ibeta_inv(v / 2, 0.5, 2 * min(p, q))$</td>
</tr>
<tr>
<td></td>
<td>$y = 1 - x$</td>
</tr>
<tr>
<td></td>
<td>The quantities x and y are both returned by $ibeta_inv$ without the subtraction implied above.</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: $t = -quantile(q)$</td>
</tr>
<tr>
<td>mean</td>
<td>0</td>
</tr>
<tr>
<td>variance</td>
<td>$v / (v - 2)$</td>
</tr>
<tr>
<td>mode</td>
<td>0</td>
</tr>
<tr>
<td>skewness</td>
<td>0</td>
</tr>
<tr>
<td>kurtosis</td>
<td>$3 * (v - 2) / (v - 4)$</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>$6 / (df - 4)$</td>
</tr>
</tbody>
</table>

Triangular Distribution

```cpp
#include <boost/math/distributions/triangular.hpp>
```
The triangular distribution is a continuous probability distribution with a lower limit \(a\), mode \(c\), and upper limit \(b\).

The triangular distribution is often used where the distribution is only vaguely known, but, like the uniform distribution, upper and limits are 'known', but a 'best guess', the mode or center point, is also added. It has been recommended as a proxy for the beta distribution. The distribution is used in business decision making and project planning.

The triangular distribution is a distribution with the probability density function:

\[
f(x) =
\begin{cases}
\frac{2(x-a)}{(b-a)} (c-a) & \text{for } a \leq x \leq c \\
\frac{2(b-x)}{(b-a)(b-c)} & \text{for } c < x \leq b
\end{cases}
\]

Parameter \(a\) (lower) can be any finite value. Parameter \(b\) (upper) can be any finite value \(> a\) (lower). Parameter \(c\) (mode) \(a \leq c \leq b\). This is the most probable value.

The random variate \(x\) must also be finite, and is supported \(\leq x \leq upper\).

The triangular distribution may be appropriate when an assumption of a normal distribution is unjustified because uncertainty is caused by rounding and quantization from analog to digital conversion. Upper and lower limits are known, and the most probable value lies midway.

The distribution simplifies when the 'best guess' is either the lower or upper limit - a 90 degree angle triangle. The default chosen is the 001 triangular distribution which expresses an estimate that the lowest value is the most likely; for example, you believe that the next-day quoted delivery date is most likely (knowing that a quicker delivery is impossible - the postman only comes once a day), and that longer delays are increasingly likely, and delivery is assumed to never take more than your upper limit.

The following graph illustrates how the probability density function PDF varies with the various parameters:
and cumulative distribution function

Member Functions

```cpp
triangular_distribution(RealType lower = 0, RealType mode = 0, RealType upper = 1);
```

Constructs a triangular distribution with lower lower (a) and upper upper (b).

Requires that the lower, mode and upper parameters are all finite, otherwise calls domain_error.

```cpp
RealType lower() const;
```

Returns the lower parameter of this distribution (default -1).
RealType mode()const;

Returns the *mode* parameter of this distribution (default 0).

RealType upper()const;

Returns the *upper* parameter of this distribution (default+1).

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis excess, range and support.

The domain of the random variable is `lower <= x <= upper`, and the supported range is `lower <= x <= upper`.

Accuracy

The triangular distribution is implemented with simple arithmetic operators and so should have errors within an epsilon or two, except quantiles with arguments nearing the extremes of zero and unity.

Implementation

In the following table, `a` is the *lower* parameter of the distribution, `c` is the *mode* parameter, `b` is the *upper* parameter, `x` is the random variate, `p` is the probability and `q = 1-p`.

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: pdf = 0 for x < mode, 2(x-a)/(b-a)(c-a) else 2*(b-x)/((b-a)(b-c))</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: cdf = 0 for x < mode (x-a)^2/((b-a)(c-a)) else 1 - (b-x)^2/((b-a)(b-c))</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: q = 1 - p</td>
</tr>
<tr>
<td>quantile</td>
<td>let p0 = (c-a)/(b-a) the point of inflection on the cdf, then given probability p and q = 1-p: x = sqrt((b-a)(c-a)p) + a ; for p < p0 x = c ; for p == p0 x = b - sqrt((b-a)(b-c)q) ; for p > p0 (See /boost/math/distributions/triangular.hpp for details.)</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>As quantile (See /boost/math/distributions/triangular.hpp for details.)</td>
</tr>
<tr>
<td>mean</td>
<td>(a + b + 3) / 3</td>
</tr>
<tr>
<td>variance</td>
<td>(a^2+b^2+c^2 - ab - ac - bc)/18</td>
</tr>
<tr>
<td>mode</td>
<td>c</td>
</tr>
<tr>
<td>skewness</td>
<td>(See /boost/math/distributions/triangular.hpp for details).</td>
</tr>
<tr>
<td>kurtosis</td>
<td>12/5</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>-3/5</td>
</tr>
</tbody>
</table>
Some ‘known good’ test values were obtained from Statlet: Calculate and plot probability distributions

References

• Wikipedia triangular distribution
• Brighton Webs Ltd. BW D-Calc 1.0 Distribution Calculator
• The Triangular Distribution including its history.

Weibull Distribution

```cpp
#include <boost/math/distributions/weibull.hpp>

namespace boost{ namespace math{

template <class RealType = double,
    class Policy = policies::policy<> >
class weibull_distribution;

typedef weibull_distribution<> weibull;

template <class RealType, class Policy>
class weibull_distribution
{
public:
    typedef RealType value_type;
    typedef Policy policy_type;
    // Construct:
    weibull_distribution(RealType shape, RealType scale = 1)
    // Accessors:
    RealType shape()const;
    RealType scale()const;
};
} // namespaces
```

The Weibull distribution is a continuous distribution with the probability density function:

\[f(x; \alpha, \beta) = \frac{\alpha}{\beta}\alpha^\alpha - 1 (x / \beta)^{\alpha - 1} e^{-(x/\beta)^\alpha} \]

For shape parameter \(\alpha > 0 \), and scale parameter \(\beta > 0 \), and \(x > 0 \).

The Weibull distribution is often used in the field of failure analysis; in particular it can mimic distributions where the failure rate varies over time. If the failure rate is:

• constant over time, then \(\alpha = 1 \), suggests that items are failing from random events.
• decreases over time, then \(\alpha < 1 \), suggesting "infant mortality".
• increases over time, then \(\alpha > 1 \), suggesting "wear out" - more likely to fail as time goes by.

The following graph illustrates how the PDF varies with the shape parameter \(\alpha \):
While this graph illustrates how the PDF varies with the scale parameter β:

Related distributions

When $\alpha = 3$, the Weibull distribution appears similar to the normal distribution. When $\alpha = 1$, the Weibull distribution reduces to the exponential distribution. The relationship of the types of extreme value distributions, of which the Weibull is but one, is discussed by Extreme Value Distributions, Theory and Applications Samuel Kotz & Saralees Nadarajah.

Member Functions

```cpp
weibull_distribution(RealType shape, RealType scale = 1);
```

Constructs a Weibull distribution with shape `shape` and scale `scale`.

Requires that the `shape` and `scale` parameters are both greater than zero, otherwise calls `domain_error`.
Returns the \textit{shape} parameter of this distribution.

```
RealType scale() const;
```

Returns the \textit{scale} parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis excess, range and support.

The domain of the random variable is \([0, \infty]\).

Accuracy

The Weibull distribution is implemented in terms of the standard library \(\log\) and \(\exp\) functions plus \(\expm1\) and \(\log1p\) and as such should have very low error rates.

Implementation

In the following table \(\alpha\) is the shape parameter of the distribution, \(\beta\) is it's scale parameter, \(x\) is the random variate, \(p\) is the probability and \(q = 1-p\).

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: pdf = (\alpha \beta^\alpha x^{\alpha-1} e^{-x/\beta})</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: p = (-\expm1(-x/\beta)^\alpha)</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: q = (e^{-x/\beta^\alpha})</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: x = (\beta * (-\log1p(-p))^{1/\alpha})</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>Using the relation: x = (\beta * (-\log(q))^{1/\alpha})</td>
</tr>
<tr>
<td>mean</td>
<td>(\beta * \Gamma(1 + 1/\alpha))</td>
</tr>
<tr>
<td>variance</td>
<td>(\beta^2(\Gamma(1 + 2/\alpha) - \Gamma^2(1 + 1/\alpha)))</td>
</tr>
<tr>
<td>mode</td>
<td>(\beta^2((\alpha - 1) / \alpha)^{1/\alpha})</td>
</tr>
</tbody>
</table>

References

Uniform Distribution

```cpp
#include <boost/math/distributions/uniform.hpp>

namespace boost { namespace math {
  template <class RealType = double, 
            class Policy = policies::policy<> >
  class uniform_distribution;

  typedef uniform_distribution<> uniform;

  template <class RealType, class Policy>
  class uniform_distribution {
    public:
      typedef RealType value_type;

      uniform_distribution(RealType lower = 0, RealType upper = 1); // Constructor.
      : m_lower(lower), m_upper(upper) // Default is standard uniform distribution.
    // Accessor functions.
      RealType lower() const;
      RealType upper() const;
    }; // class uniform_distribution
} // namespaces
```

The uniform distribution, also known as a rectangular distribution, is a probability distribution that has constant probability.

The **continuous uniform distribution** is a distribution with the **probability density function**:

\[f(x) = \begin{cases}
 \frac{1}{(upper - lower)} & \text{for } lower < x < upper \\
 0 & \text{for } x < lower \text{ or } x > upper
\end{cases} \]

and in this implementation:

\[\frac{1}{(upper - lower)} \text{ for } x = lower \text{ or } x = upper \]

The choice of \(x = lower\) or \(x = upper\) is made because statistical use of this distribution judged is most likely: the method of maximum likelihood uses this definition.

There is also a **discrete uniform distribution**.

Parameters lower and upper can be any finite value.

The **random variate** \(x\) must also be finite, and is supported \(lower \leq x \leq upper\).

The lower parameter is also called the **location parameter**, that is where the origin of a plot will lie, and \((upper - lower)\) is also called the **scale parameter**.

The following graph illustrates how the **probability density function PDF** varies with the shape parameter:
Likewise for the CDF:

Member Functions

```cpp
uniform_distribution<RealType lower = 0, RealType upper = 1>;
```

Constructs a uniform distribution with lower `lower` (a) and upper `upper` (b).

Requires that the `lower` and `upper` parameters are both finite; otherwise if infinity or NaN then calls **domain_error**.

```cpp
RealType lower() const;
```

Returns the `lower` parameter of this distribution.
RealType upper() const;

Returns the *upper* parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is any finite value, but the supported range is only *lower* <= *x* <= *upper*.

Accuracy

The uniform distribution is implemented with simple arithmetic operators and so should have errors within an epsilon or two.

Implementation

In the following table *a* is the *lower* parameter of the distribution, *b* is the *upper* parameter, *x* is the random variate, *p* is the probability and *q* = 1-*p*.

<table>
<thead>
<tr>
<th>Function</th>
<th>Implementation Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf</td>
<td>Using the relation: pdf = 0 for x < a, 1 / (b - a) for a <= x <= b, 0 for x > *b</td>
</tr>
<tr>
<td>cdf</td>
<td>Using the relation: cdf = 0 for x < a, (x - a) / (b - a) for a <= x <= b, 1 for x > *b</td>
</tr>
<tr>
<td>cdf complement</td>
<td>Using the relation: q = 1 - p, (b - x) / (b - a)</td>
</tr>
<tr>
<td>quantile</td>
<td>Using the relation: x = p * (b - a) + a;</td>
</tr>
<tr>
<td>quantile from the complement</td>
<td>x = -q * (b - a) + b</td>
</tr>
<tr>
<td>mean</td>
<td>(*a + b) / 2</td>
</tr>
<tr>
<td>variance</td>
<td>(*b - a)² / 12</td>
</tr>
<tr>
<td>mode</td>
<td>any value in [a, b] but a is chosen. (Would NaN be better?)</td>
</tr>
<tr>
<td>skewness</td>
<td>0</td>
</tr>
<tr>
<td>kurtosis excess</td>
<td>-6/5 = -1.2 exactly. (kurtosis - 3)</td>
</tr>
<tr>
<td>kurtosis</td>
<td>9/5</td>
</tr>
</tbody>
</table>

References

- Wikipedia continuous uniform distribution
Distribution Algorithms

Finding the Location and Scale for Normal and similar distributions

Two functions aid finding location and scale of random variable z to give probability p (given a scale or location). Only applies to distributions like normal, lognormal, extreme value, Cauchy, (and symmetrical triangular), that have scale and location properties.

These functions are useful to predict the mean and/or standard deviation that will be needed to meet a specified minimum weight or maximum dose.

Complement versions are also provided, both with explicit and implicit (default) policy.

```cpp
using boost::math::policies::policy; // May be needed by users defining their own policies.
using boost::math::complement; // Will be needed by users who want to use complements.
```

find_location function

```cpp
#include <boost/math/distributions/find_location.hpp>

namespace boost { namespace math {

template <class Dist, class Policy> // explicit error handling policy
    typename Dist::value_type find_location( // For example, normal mean.
        typename Dist::value_type z, // location of random variable z to give probability, P(X > z) = p.
        typename Dist::value_type p, // example, a nominal minimum acceptable z, so that p * 100 % are > z
        typename Dist::value_type scale, // scale parameter, for example, normal standard deviation.
        const Policy& pol);

template <class Dist> // with default policy.
    typename Dist::value_type find_location( // For example, normal mean.
        typename Dist::value_type z, // location of random variable z to give probability, P(X > z) = p.
        typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z
        typename Dist::value_type scale); // scale parameter, for example, normal standard deviation.

}} // namespaces
```

find_scale function

```cpp
#include <boost/math/distributions/find_scale.hpp>

```
namespace boost::namespace math{

template <class Dist, class Policy>
typename Dist::value_type find_scale(// For example, normal mean.
typename Dist::value_type z, // location of random variable z to give probability, P(X > z) \[= p.
// For example, a nominal minimum acceptable weight z, so that p * 100 % are > z
(typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z.
typename Dist::value_type location, // location parameter, for example, normal distribution mean.
const Policy& pol);

template <class Dist> // with default policy.
typename Dist::value_type find_scale(// For example, normal mean.
typename Dist::value_type z, // location of random variable z to give probability, P(X > z) \[= p.
// For example, a nominal minimum acceptable weight z, so that p * 100 % are > z
(typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z.
typename Dist::value_type location) // location parameter, for example, normal distribution \(\mu\).
mean.
}) // namespaces

All argument must be finite, otherwise domain_error is called.
Probability arguments must be \([0, 1]\), otherwise domain_error is called.
If the choice of arguments would give a negative scale, domain_error is called, unless the policy is to ignore, when the negative (impossible) value of scale is returned.

Find Mean and standard deviation examples gives simple examples of use of both find_scale and find_location, and a longer example finding means and standard deviations of normally distributed weights to meet a specification.

Extras/Future Directions

Adding Additional Location and Scale Parameters

In some modelling applications we require a distribution with a specific location and scale: often this equates to a specific mean and standard deviation, although for many distributions the relationship between these properties and the location and scale parameters are non-trivial. See http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm for more information.

The obvious way to handle this is via an adapter template:

```cpp
template <class Dist>
class scaled_distribution
{
    scaled_distribution(
        const Dist dist,
        typename Dist::value_type location,
        typename Dist::value_type scale = 0);
};
```

Which would then have its own set of overloads for the non-member accessor functions.

An "any_distribution" class

It would be fairly trivial to add a distribution object that virtualises the actual type of the distribution, and can therefore hold "any" object that conforms to the conceptual requirements of a distribution:
template <class RealType>
class any_distribution
{
public:
 template <class Distribution>
 any_distribution(const Distribution& d);

 // Get the cdf of the underlying distribution:
 template <class RealType>
 RealType cdf(const any_distribution<RealType>& d, RealType x);
 // etc....
};

Such a class would facilitate the writing of non-template code that can function with any distribution type. It's not clear yet whether there is a compelling use case though. Possibly tests for goodness of fit might provide such a use case: this needs more investigation.

Higher Level Hypothesis Tests

Higher-level tests roughly corresponding to the Mathematica Hypothesis Tests package could be added reasonably easily, for example:

```cpp
template <class InputIterator>
typename std::iterator_traits<InputIterator>::value_type
test_equal_mean(
  InputIterator a,
  InputIterator b,
  typename std::iterator_traits<InputIterator>::value_type expected_mean);
```

Returns the probability that the data in the sequence [a,b) has the mean `expected_mean`.

Integration With Statistical Accumulators

Eric Niebler's accumulator framework - also work in progress - provides the means to calculate various statistical properties from experimental data. There is an opportunity to integrate the statistical tests with this framework at some later date:
// Define an accumulator, all required statistics to calculate the test
// are calculated automatically:
accumulator_set<double, features<tag::test_expected_mean> > acc(expected_mean=4);
// Pass our data to the accumulator:
acc = std::accumulate(mydata.begin(), mydata.end(), acc);
// Extract the result:
double p = probability(acc);

Special Functions

Gamma Functions

Gamma

Synopsis

#include <boost/math/special_functions/gamma.hpp>

namespace boost { namespace math {

 template <class T>
 calculated-result-type tgamma(T z);

 template <class T, class Policy>
 calculated-result-type tgamma(T z, const Policy&);

 template <class T>
 calculated-result-type tgamma1pm1(T dz);

 template <class T, class Policy>
 calculated-result-type tgamma1pm1(T dz, const Policy&);

}} // namespaces

Description

Returns the "true gamma" (hence name tgamma) of value z:

tgamma (z) = \Gamma (z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt
The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

There are effectively two versions of the tgamma function internally: a fully generic version that is slow, but reasonably accurate, and a much more efficient approximation that is used where the number of digits in the significand of T correspond to a certain Lanczos approximation. In practice any built-in floating point type you will encounter has an appropriate Lanczos approximation defined for it. It is also possible, given enough machine time, to generate further Lanczos approximations using the program `libs/math/tools/lanczos_generator.cpp`.

The return type of this function is computed using the result type calculation rules: the result is double when T is an integer type, and T otherwise.

```
template <class T>
calculated-result-type tgamma1pm1(T dz);

template <class T, class Policy>
calculated-result-type tgamma1pm1(T dz, const Policy&);
```

Returns tgamma(dz + 1) - 1. Internally the implementation does not make use of the addition and subtraction implied by the definition, leading to accurate results even for very small dz. However, the implementation is capped to either 35 digit accuracy, or to the precision of the Lanczos approximation associated with type T, whichever is more accurate.

The return type of this function is computed using the result type calculation rules: the result is double when T is an integer type, and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along with comparisons to the GSL-1.9, GNU C Lib, HP-UX C Library and Cephes libraries. Unless otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.
Values Near a Negative Pole

Values Near 1 or 2

Values Near Zero

<table>
<thead>
<tr>
<th>Factorials and Half factorials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values Near Zero</td>
</tr>
<tr>
<td>Values Near a Negative Pole</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significance Size</th>
<th>Platform and Compiler</th>
<th>Values Near Zero</th>
<th>Values Near a Negative Pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak=2.0 Mean=1.1</td>
<td>Peak=2.6 Mean=1.3</td>
<td></td>
<td>(GSL=4.5)</td>
</tr>
<tr>
<td></td>
<td>(GSL=7.9)</td>
<td></td>
<td>(Cephes=1.0)</td>
</tr>
<tr>
<td>(Cephes=0.7)</td>
<td>(Cephes=3.0)</td>
<td></td>
<td>(Cephes=2.7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform and Compiler</th>
<th>Values Near Zero</th>
<th>Values Near a Negative Pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win32 Visual C++ 8</td>
<td>Peak=1.9 Mean=0.7</td>
<td>Peak=2.6 Mean=1.3</td>
</tr>
<tr>
<td></td>
<td>(GSL=3.9)</td>
<td>(GSL=2.5)</td>
</tr>
<tr>
<td></td>
<td>(Cephes=3.0)</td>
<td>(Cephes=2.7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform and Compiler</th>
<th>Values Near Zero</th>
<th>Values Near a Negative Pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux IA32 / GCC</td>
<td>Peak=300 Mean=49.5</td>
<td>Peak=157 Mean=65</td>
</tr>
<tr>
<td></td>
<td>(GNU C Lib Peak=395 Mean=89)</td>
<td>(GNU C Lib Peak=205 Mean=108)</td>
</tr>
<tr>
<td></td>
<td>Peak=3.0 Mean=1.4</td>
<td>Peak=5.0 Mean=1.8</td>
</tr>
<tr>
<td></td>
<td>(GNU C Lib Peak=11 Mean=3.3)</td>
<td>(GNU C Lib Peak=0.92 Mean=0.2)</td>
</tr>
<tr>
<td></td>
<td>Peak=4.8 Mean=1.5</td>
<td>Peak=5.0 Mean=1.5</td>
</tr>
<tr>
<td></td>
<td>(GNU C Lib Peak 0)</td>
<td>(GNU C Lib Peak 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform and Compiler</th>
<th>Values Near Zero</th>
<th>Values Near a Negative Pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux IA64 / GCC</td>
<td>Peak=2.5 Mean=1.1</td>
<td>Peak=5.2 Mean=1.92</td>
</tr>
<tr>
<td></td>
<td>(HP-UX C Library Peak 0)</td>
<td>(HP-UX C Library Peak 0)</td>
</tr>
<tr>
<td></td>
<td>Peak=3.5 Mean=1.7</td>
<td>Peak=5.0 Mean=1.7</td>
</tr>
<tr>
<td></td>
<td>(HP-UX C Library Peak 0)</td>
<td>(GNU C Lib Peak 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform and Compiler</th>
<th>Values Near Zero</th>
<th>Values Near a Negative Pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=2.5 Mean=1.1</td>
<td>Peak=5.2 Mean=1.92</td>
</tr>
<tr>
<td></td>
<td>(HP-UX C Library Peak 0)</td>
<td>(HP-UX C Library Peak 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platform and Compiler</th>
<th>Values Near Zero</th>
<th>Values Near a Negative Pole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak=3.5 Mean=1.7</td>
<td>Peak=5.0 Mean=1.7</td>
</tr>
<tr>
<td></td>
<td>(HP-UX C Library Peak 0)</td>
<td>(GNU C Lib Peak 0)</td>
</tr>
</tbody>
</table>

Testing

The gamma is relatively easy to test: factorials and half-integer factorials can be calculated exactly by other means and compared with the gamma function. In addition, some accuracy tests in known tricky areas were computed at high precision using the generic version of this function.

The function `tgamma1pm1` is tested against values calculated very naively using the formula \(\text{tgamma}(1+dz) - 1 \) with a lanczos approximation accurate to around 100 decimal digits.

Implementation

The generic version of the `tgamma` function is implemented by combining the series and continued fraction representations for the incomplete gamma function:

\[
\Gamma(z) = (l a - l) \left(\sum_0^\infty \frac{1}{a^n} \right) ; c_k = -(a + k - 1) \wedge d_k = a + k + l
\]

where \(l \) is an arbitrary integration limit: choosing \(l = \max(10, a) \) seems to work fairly well.

For types of known precision the Lanczos approximation is used, a traits class `boost::math::lanczos::lanczos_traits` maps type `T` to an appropriate approximation.

For \(z \) in the range \(-20 < z < 1\) then recursion is used to shift to \(z > 1 \) via:

\[
\Gamma(z) = \frac{\Gamma(z + 1)}{z}
\]

For very small \(z \), this helps to preserve the identity:
\[\lim_{z \to 0} (\Gamma(z)) = \frac{1}{z} \]

For \(z < -20 \) the reflection formula:

\[\Gamma(-z) = -\pi \frac{\pi}{\Gamma(z) \sin(\pi z)} \]

is used. Particular care has to be taken to evaluate the \(z \cdot \sin(\pi z) \) part: a special routine is used to reduce \(z \) prior to multiplying by \(\pi \) to ensure that the result is in the range \([0, \pi/2]\). Without this an excessive amount of error occurs in this region (which is hard enough already, as the rate of change near a negative pole is exceptionally high).

Finally if the argument is a small integer then table lookup of the factorial is used.

The function \(\text{tgamma1pm1} \) is implemented using rational approximations devised by JM in the region \(-0.5 < dz < 2\). These are the same approximations (and internal routines) that are used for \(\text{lgamma} \), and so aren't detailed further here. The result of the approximation is \(\log(\text{tgamma}(dz+1)) \) which can be fed into \(\expm1 \) to give the desired result. Outside the range \(-0.5 < dz < 2\) then the naive formula \(\text{tgamma1pm1}(dz) = \text{tgamma}(dz+1) - 1 \) can be used directly.

Log Gamma

Synopsis

```
#include <boost/math/special_functions/gamma.hpp>

namespace boost{ namespace math{

   template <class T>
   calculated-result-type lgamma(T z);

   template <class T, class Policy>
   calculated-result-type lgamma(T z, const Policy&);

   template <class T>
   calculated-result-type lgamma(T z, int* sign);

   template <class T, class Policy>
   calculated-result-type lgamma(T z, int* sign, const Policy&);

}} // namespaces
```

Description

The \(\text{lgamma} \) function is defined by:

\[\text{lgamma}(z) = \ln | \Gamma(z) | \]

The second form of the function takes a pointer to an integer, which if non-null is set on output to the sign of \(\text{tgamma}(z) \).

The final \(\text{Policy} \) argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.
There are effectively two versions of this function internally: a fully generic version that is slow, but reasonably accurate, and a much more efficient approximation that is used where the number of digits in the significand of T correspond to a certain Lanczos approximation. In practice, any built-in floating-point type you will encounter has an appropriate Lanczos approximation defined for it. It is also possible, given enough machine time, to generate further Lanczos approximation’s using the program libs/math/tools/lanczos_generator.cpp.

The return type of these functions is computed using the result type calculation rules: the result is of type double if T is an integer type, or type T otherwise.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along with comparisons to the GSL-1.9, GNU C Lib, HP-UX C Library and Cephes libraries. Unless otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.

Note that while the relative errors near the positive roots of lgamma are very low, the lgamma function has an infinite number of irrational roots for negative arguments: very close to these negative roots only a low absolute error can be guaranteed.
Testing

The main tests for this function involve comparisons against the logs of the factorials which can be independently calculated to very high accuracy.

Random tests in key problem areas are also used.

Implementation

The generic version of this function is implemented by combining the series and continued fraction representations for the incomplete gamma function:

$$\ln(\left| \Gamma(z) \right|) = z \ln(l) - l + \ln \left(\sum_{0}^{\infty} \frac{\left(-z \right)^{n}}{n!} \right)$$

where \(l \) is an arbitrary integration limit: choosing \(l = \max(10, a) \) seems to work fairly well. For negative \(z \) the logarithm version of the reflection formula is used:

$$\ln(\left| \Gamma(-z) \right|) = \ln(\pi) - \ln(\Gamma(z)) - \ln(z\sin(\pi z))$$

For types of known precision, the Lanczos approximation is used, a traits class boost::math::lanczos::lanczos_traits maps type T to an appropriate approximation. The logarithmic version of the Lanczos approximation is:

$$\ln(\left| \Gamma(z) \right|) = (z - 0.5) \ln\left(\frac{z + g - 0.5}{e} \right) + \ln(L_{e,g}(z))$$

Where \(L_{e,g} \) is the Lanczos sum, scaled by \(e^g \).

As before the reflection formula is used for \(z < 0 \).
When \(z \) is very near 1 or 2, then the logarithmic version of the Lanczos approximation suffers very badly from cancellation error: indeed for values sufficiently close to 1 or 2, arbitrarily large relative errors can be obtained (even though the absolute error is tiny).

For types with up to 113 bits of precision (up to and including 128-bit long doubles), root-preserving rational approximations devised by JM are used over the intervals \([1,2]\) and \([2,3]\). Over the interval \([2,3]\) the approximation form used is:

\[
\lgamma(z) = (z-2)(z+1)(Y + R(z-2));
\]

Where \(Y \) is a constant, and \(R(z-2) \) is the rational approximation: optimised so that it’s absolute error is tiny compared to \(Y \). In addition small values of \(z \) greater than 3 can be handled by argument reduction using the recurrence relation:

\[
\lgamma(z+1) = \log(z) + \lgamma(z);
\]

Over the interval \([1,2]\) two approximations have to be used, one for small \(z \) uses:

\[
\lgamma(z) = (z-1)(z-2)(Y + R(z-1));
\]

Once again \(Y \) is a constant, and \(R(z-1) \) is optimised for low absolute error compared to \(Y \). For \(z > 1.5 \) the above form wouldn’t converge to a minimax solution but this similar form does:

\[
\lgamma(z) = (2-z)(1-z)(Y + R(2-z));
\]

Finally for \(z < 1 \) the recurrence relation can be used to move to \(z > 1 \):

\[
\lgamma(z) = \lgamma(z+1) - \log(z);
\]

Note that while this involves a subtraction, it appears not to suffer from cancellation error: as \(z \) decreases from 1 the \(-\log(z)\) term grows positive much more rapidly than the \(\lgamma(z+1) \) term becomes negative. So in this specific case, significant digits are preserved, rather than cancelled.

For other types which do have a Lanczos approximation defined for them the current solution is as follows: imagine we balance the two terms in the Lanczos approximation by dividing the power term by its value at \(z = 1 \), and then multiplying the Lanczos coefficients by the same value. Now each term will take the value 1 at \(z = 1 \) and we can rearrange the power terms in terms of \(\log1p \). Likewise if we subtract 1 from the Lanczos sum part (algebraically, by subtracting the value of each term at \(z = 1 \)), we obtain a new summation that can be also be fed into \(\log1p \). Crucially, all of the terms tend to zero, as \(z \to 1 \):

\[
\ln(| \Gamma(z) |) = \frac{\Delta z}{\ln(e)} + \frac{1}{2} \ln(1 + \frac{\Delta z}{g + 0.5}) + \ln\left(1 + \sum_{k=0}^{N-1} \frac{\Delta z d_k}{k(\Delta z + k)}\right)
\]

\[\Delta z = 1 - z \quad \land \quad d_k = \frac{g + 0.5}{e} \left(\frac{C_k}{e}\right)\]

The \(C_k \) terms in the above are the same as in the Lanczos approximation.

A similar rearrangement can be performed at \(z = 2 \):

\[
\ln(| \Gamma(z) |) = \frac{3}{2} \ln(1 + \frac{\Delta z}{g + 1.5}) + \Delta z \ln\left(\frac{z + g - 0.5}{z}\right) + \ln\left(1 + \sum_{k=1}^{N-1} \frac{-d_k \Delta z}{z + kz + k^2 - 1}\right)
\]

\[\Delta z = z - 2 \quad \land \quad d_k = \left(\frac{g + 1.5}{e}\right) \left(\frac{C_k}{e}\right)\]
Digamma

Synopsis

```cpp
#include <boost/math/special_functions/digamma.hpp>

namespace boost { namespace math {

    template <class T>
    calculated-result-type digamma(T z);

    template <class T, class Policy>
    calculated-result-type digamma(T z, const Policy&);

}} // namespaces
```

Description

Returns the digamma or psi function of \(x \). Digamma is defined as the logarithmic derivative of the gamma function:

\[
\psi(x) = \frac{d}{dx} \ln(\Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}
\]

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

There is no fully generic version of this function: all the implementations are tuned to specific accuracy levels, the most precise of which delivers 34-digits of precision.

The return type of this function is computed using the `result type calculation rules`: the result is of type `double` when \(T \) is an integer type, and type \(T \) otherwise.
Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types. Unless otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.

<table>
<thead>
<tr>
<th>Significant and Size</th>
<th>Platform and Compiler</th>
<th>Random Values</th>
<th>Positive Values Near the Positive Root</th>
<th>Values Near Zero</th>
<th>Negative Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32 Visual C++ 8</td>
<td>Peak=214 Mean=16</td>
<td>Peak=0.99 Mean=0.5</td>
<td>P e a k = 0 . 9 5 Mean=0.5</td>
<td>Peak=214 Mean=16</td>
</tr>
<tr>
<td>64</td>
<td>Linux IA32 / GCC</td>
<td>Peak=180 Mean=13</td>
<td>Peak=1.3 Mean=0.45</td>
<td>P e a k = 0 . 9 8 Mean=0.35</td>
<td>Peak=180 Mean=13</td>
</tr>
<tr>
<td>64</td>
<td>Linux IA64 / GCC</td>
<td>Peak=180 Mean=13</td>
<td>Peak=1.3 Mean=0.45</td>
<td>P e a k = 0 . 9 8 Mean=0.4</td>
<td>Peak=180 Mean=13</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=64 Mean=6</td>
<td>Peak=1.1 Mean=0.5</td>
<td>P e a k = 0 . 9 9 Mean=0.4</td>
<td>Peak=64 Mean=6</td>
</tr>
</tbody>
</table>

As shown above, error rates for positive arguments are generally very low. For negative arguments there are an infinite number of irrational roots: relative errors very close to these can be arbitrarily large, although absolute error will remain very low.

Testing

There are two sets of tests: spot values are computed using the online calculator at functions.wolfram.com, while random test values are generated using the high-precision reference implementation (a differentiated Lanczos approximation see below).

Implementation

The implementation is divided up into the following domains:

For Negative arguments the reflection formula:

\[\text{digamma}(1-x) = \text{digamma}(x) + \pi/\tan(\pi x); \]

is used to make \(x \) positive.

For arguments in the range \([0,1]\) the recurrence relation:

\[\text{digamma}(x) = \text{digamma}(x+1) - 1/x \]

is used to shift the evaluation to \([1,2]\).

For arguments in the range \([1,2]\) a rational approximation devised by JM is used (see below).

For arguments in the range \([2,\text{BIG}]\) the recurrence relation:

\[\text{digamma}(x+1) = \text{digamma}(x) + 1/x; \]

is used to shift the evaluation to the range \([1,2]\).

For arguments > BIG the asymptotic expansion:
\[
\psi(x) = \ln(x) + \frac{1}{2x} - \sum_{n=1}^{\infty} \frac{B_{2n}}{2nx^{2n}}
\]

can be used. However, this expansion is divergent after a few terms: exactly how many terms depends on the size of \(x\). Therefore the value of \(BIG\) must be chosen so that the series can be truncated at a term that is too small to have any effect on the result when evaluated at \(BIG\). Choosing \(BIG=10\) for up to 80-bit reals, and \(BIG=20\) for 128-bit reals allows the series to truncated after a suitably small number of terms and evaluated as a polynomial in \(1/(x*x)\).

The rational approximation devised by JM in the range [1,2] is derived as follows.

First a high precision approximation to digamma was constructed using a 60-term differentiated Lanczos approximation, the form used is:

\[
\psi(x) = \frac{z - \frac{1}{2}}{x + g - \frac{1}{2}} + \ln\left(x + g - \frac{1}{2}\right) + \frac{P'(x)}{P(x)} - \frac{Q'(x)}{Q(x)} - 1
\]

Where \(P(x)\) and \(Q(x)\) are the polynomials from the rational form of the Lanczos sum, and \(P'(x)\) and \(Q'(x)\) are their first derivatives. The Lanczos part of this approximation has a theoretical precision of ~100 decimal digits. However, cancellation in the above sum will reduce that to around \(99-(1/y)\) digits if \(y\) is the result. This approximation was used to calculate the positive root of digamma, and was found to agree with the value used by Cody to 25 digits (See Math. Comp. 27, 123-127 (1973) by Cody, Strecok and Thacher) and with the value used by Morris to 35 digits (See TOMS Algorithm 708).

Likewise a few spot tests agreed with values calculated using functions.wolfram.com to >40 digits. That's sufficiently precise to insure that the approximation below is accurate to double precision. Achieving 128-bit long double precision requires that the location of the root is known to ~70 digits, and it's not clear whether the value calculated by this method meets that requirement: the difficulty lies in independently verifying the value obtained.

The rational approximation devised by JM was optimised for absolute error using the form:

\[
digamma(x) = (x - X0)(Y + R(x - 1))
\]

Where \(X0\) is the positive root of digamma, \(Y\) is a constant, and \(R(x - 1)\) is the rational approximation. Note that since \(X0\) is irrational, we need twice as many digits in \(X0\) as in \(x\) in order to avoid cancellation error during the subtraction (this assumes that \(x\) is an exact value, if it's not then all bets are off). That means that even when \(x\) is the value of the root rounded to the nearest representable value, the result of \(\text{digamma}(x)\) will not be zero.
Ratios of Gamma Functions

```cpp
#include <boost/math/special_functions/gamma.hpp>

namespace boost { namespace math {

  template <class T1, class T2>
  calculated-result-type tgamma_ratio(T1 a, T2 b);

  template <class T1, class T2, class Policy>
  calculated-result-type tgamma_ratio(T1 a, T2 b, const Policy&);

  template <class T1, class T2>
  calculated-result-type tgamma_delta_ratio(T1 a, T2 delta);

  template <class T1, class T2, class Policy>
  calculated-result-type tgamma_delta_ratio(T1 a, T2 delta, const Policy&);

}} // namespaces
```

Description

```cpp
template <class T1, class T2>
calculated-result-type tgamma_ratio(T1 a, T2 b);

template <class T1, class T2, class Policy>
calculated-result-type tgamma_ratio(T1 a, T2 b, const Policy&);
```

Returns the ratio of gamma functions:

\[
tgamma_ratio(a,b) = \frac{\Gamma(a)}{\Gamma(b)}
\]

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Internally this just calls `tgamma_delta_ratio(a, b-a)`.

```cpp
template <class T1, class T2>
calculated-result-type tgamma_delta_ratio(T1 a, T2 delta);

template <class T1, class T2, class Policy>
calculated-result-type tgamma_delta_ratio(T1 a, T2 delta, const Policy&);
```

Returns the ratio of gamma functions:

\[
tgamma_delta_ratio(a,delta) = \frac{\Gamma(a)}{\Gamma(a + delta)}
\]

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Note that the result is calculated accurately even when `delta` is small compared to `a`: indeed even if `a+delta \sim a`. The function is typically used when `a` is large and `delta` is very small.

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types, otherwise the result type is simple T1.
Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types. Unless otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.

Table 16. Errors In the Function tgamma_delta_ratio(a, delta)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>20 < a < 80 and delta < 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=16.9 Mean=1.7</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA32, gcc-3.4.4</td>
<td>Peak=24 Mean=2.7</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4.4</td>
<td>Peak=12.8 Mean=1.8</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=21.4 Mean=2.3</td>
</tr>
</tbody>
</table>

Table 17. Errors In the Function tgamma_ratio(a, b)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>6 < a,b < 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=34 Mean=9</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA32, gcc-3.4.4</td>
<td>Peak=91 Mean=23</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4.4</td>
<td>Peak=35.6 Mean=9.3</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=43.9 Mean=13.2</td>
</tr>
</tbody>
</table>
Testing

Accuracy tests use data generated at very high precision (with NTL RR class set at 1000-bit precision: about 300 decimal digits) and a deliberately naive calculation of $\Gamma(x)/\Gamma(y)$.

Implementation

The implementation of these functions is very similar to that of beta, and is based on combining similar power terms to improve accuracy and avoid spurious overflow/underflow.

In addition there are optimisations for the situation where delta is a small integer: in which case this function is basically the reciprocal of a rising factorial, or where both arguments are smallish integers: in which case table lookup of factorials can be used to calculate the ratio.

Incomplete Gamma Functions

Synopsis

```cpp
#include <boost/math/special_functions/gamma.hpp>

namespace boost { namespace math {

    template <class T1, class T2>
    calculated-result-type gamma_p(T1 a, T2 z);

    template <class T1, class T2, class Policy>
    calculated-result-type gamma_p(T1 a, T2 z, const Policy&);

    template <class T1, class T2>
    calculated-result-type gamma_q(T1 a, T2 z);

    template <class T1, class T2, class Policy>
    calculated-result-type gamma_q(T1 a, T2 z, const Policy&);

    template <class T1, class T2>
    calculated-result-type tgamma_lower(T1 a, T2 z);

    template <class T1, class T2, class Policy>
    calculated-result-type tgamma_lower(T1 a, T2 z, const Policy&);

    template <class T1, class T2>
    calculated-result-type tgamma(T1 a, T2 z);

    template <class T1, class T2, class Policy>
    calculated-result-type tgamma(T1 a, T2 z, const Policy&);

} } // namespaces
```

Description

There are four incomplete gamma functions: two are normalised versions (also known as regularized incomplete gamma functions) that return values in the range $[0, 1]$, and two are non-normalised and return values in the range $[0, \Gamma(a)]$. Users interested in statistical applications should use the normalised versions (gamma_p and gamma_q).

All of these functions require $a > 0$ and $z \geq 0$, otherwise they return the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.
The return type of these functions is computed using the *result type calculation rules* when T1 and T2 are different types, otherwise the return type is simply T1.

\[
\text{template } \langle \text{class T1, class T2} \rangle \\
\text{calculated-result-type gamma_p(T1 a, T2 z);}
\]

\[
\text{template } \langle \text{class T1, class T2, class Policy} \rangle \\
\text{calculated-result-type gamma_p(T1 a, T2 z, const Policy&);}
\]

Returns the normalised lower incomplete gamma function of \(a\) and \(z\):

\[
\text{gamma}_p(a, z) = \frac{\gamma(a, z)}{\Gamma(a)} = \frac{1}{\Gamma(a)} \int_0^z t^{a-1} e^{-t} dt
\]

This function changes rapidly from 0 to 1 around the point \(z = a\):

\[
\text{template } \langle \text{class T1, class T2} \rangle \\
\text{calculated-result-type gamma_q(T1 a, T2 z);}
\]

\[
\text{template } \langle \text{class T1, class T2, class Policy} \rangle \\
\text{calculated-result-type gamma_q(T1 a, T2 z, const Policy&);}
\]

Returns the normalised upper incomplete gamma function of \(a\) and \(z\):

\[
\text{gamma}_q(a, z) = \frac{\Gamma(a, z)}{\Gamma(a)} = \frac{1}{\Gamma(a)} \int_z^\infty t^{a-1} e^{-t} dt
\]

This function changes rapidly from 1 to 0 around the point \(z = a\):
\begin{align*}
gamma_q(a, z) &= \gamma(a, z) = \int_0^z t^{a-1} e^{-t} dt \\
tgamma(a, z) &= \Gamma(a, z) = \int_z^\infty t^{a-1} e^{-t} dt
\end{align*}

\textbf{Accuracy}

The following tables give peak and mean relative errors in over various domains of a and z, along with comparisons to the GSL-1.9 and Cephes libraries. Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error.

Note that errors grow as a grows larger.

Note also that the higher error rates for the 80 and 128 bit long double results are somewhat misleading: expected results that are zero at 64-bit double precision may be non-zero - but exceptionally small - with the larger exponent range of a long double. These results therefore reflect the more extreme nature of the tests conducted for these types.

All values are in units of epsilon.
Table 18. Errors in the Function gamma_p(a,z)

<table>
<thead>
<tr>
<th>Signific- and Size</th>
<th>Platform and Compiler</th>
<th>$0.5 < a < 100$ and $0.01a < z < 100a$</th>
<th>$1 \times 10^{12} < a < 5 \times 10^2$ and $0.01a < z < 100a$</th>
<th>$1 \times 10^{-6} < a < 1.7 \times 10^6$ and $1 < z < 100*a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=36 Mean=9.1 (GSL Peak=342 Mean=46)</td>
<td>Peak=4.5 Mean=1.4 (GSL Peak=4.8 Mean=0.76)</td>
<td>Peak=244 Mean=21 (GSL Peak=1022 Mean=1054)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Cephes Peak=491 Mean=102)</td>
<td>(Cephes Peak=2.1 Mean=5.6)</td>
<td>(Cephes Peak8 \times 10^6 Mean7x10^9)</td>
</tr>
<tr>
<td>64</td>
<td>RedHat Linux IA32, gcc-3.3</td>
<td>Peak=241 Mean=36</td>
<td>Peak=4.7 Mean=1.5</td>
<td>Peak=30,220 Mean=1929</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4</td>
<td>Peak=41 Mean=10</td>
<td>Peak=4.7 Mean=1.4</td>
<td>Peak=30,790 Mean=1864</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=40.2 Mean=10.2</td>
<td>Peak=5 Mean=1.6</td>
<td>Peak=5,476 Mean=440</td>
</tr>
</tbody>
</table>

Table 19. Errors in the Function gamma_q(a,z)

<table>
<thead>
<tr>
<th>Signific- and Size</th>
<th>Platform and Compiler</th>
<th>$0.5 < a < 100$ and $0.01a < z < 100a$</th>
<th>$1 \times 10^{12} < a < 5 \times 10^2$ and $0.01a < z < 100a$</th>
<th>$1 \times 10^{-6} < a < 1.7 \times 10^6$ and $1 < z < 100*a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=28.3 Mean=7.2 (GSL Peak=201 Mean=13)</td>
<td>Peak=4.8 Mean=1.6 (GSL Peak~1.3 \times 10^10 Mean=1x10^{10})</td>
<td>Peak=469 Mean=33 (GSL Peak=27,050 Mean=2159)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Cephes Peak=556 Mean=97)</td>
<td>(Cephes Peak~3 \times 10^{11} Mean=4x10^{10})</td>
<td>(Cephes Peak8 \times 10^6 Mean7x10^9)</td>
</tr>
<tr>
<td>64</td>
<td>RedHat Linux IA32, gcc-3.3</td>
<td>Peak=280 Mean=33</td>
<td>Peak=4.1 Mean=1.6</td>
<td>Peak=11,490 Mean=732</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4</td>
<td>Peak=32 Mean=9.4</td>
<td>Peak=4.7 Mean=1.5</td>
<td>Peak=6815 Mean=414</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=37 Mean=10</td>
<td>Peak=11.2 Mean=2.0</td>
<td>Peak=4,999 Mean=298</td>
</tr>
</tbody>
</table>
Table 20. Errors In the Function tgamma_lower(a,z)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>0.5 < a < 100 and 0.01a < z < 100a</th>
<th>1x10^{-12} < a < 5x10^{-2} and 0.01a < z < 100a</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=5.5 Mean=1.4</td>
<td>Peak=3.6 Mean=0.78</td>
</tr>
<tr>
<td>64</td>
<td>RedHat Linux IA32, gcc-3.3</td>
<td>Peak=402 Mean=79</td>
<td>Peak=3.4 Mean=0.8</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4</td>
<td>Peak=6.8 Mean=1.4</td>
<td>Peak=3.4 Mean=0.78</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=6.1 Mean=1.8</td>
<td>Peak=3.7 Mean=0.89</td>
</tr>
</tbody>
</table>

Table 21. Errors In the Function tgamma(a,z)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>0.5 < a < 100 and 0.01a < z < 100a</th>
<th>1x10^{-12} < a < 5x10^{-2} and 0.01a < z < 100a</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=5.9 Mean=1.5</td>
<td>Peak=1.8 Mean=0.6</td>
</tr>
<tr>
<td>64</td>
<td>RedHat Linux IA32, gcc-3.3</td>
<td>Peak=596 Mean=116</td>
<td>Peak=3.2 Mean=0.84</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4.4</td>
<td>Peak=40.2 Mean=2.5</td>
<td>Peak=3.2 Mean=0.8</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=364 Mean=17.6</td>
<td>Peak=12.7 Mean=1.8</td>
</tr>
</tbody>
</table>

Testing

There are two sets of tests: spot tests compare values taken from Mathworld’s online evaluator with this implementation to perform a basic “sanity check”. Accuracy tests use data generated at very high precision (using NTL’s RR class set at 1000-bit precision) using this implementation with a very high precision 60-term Lanczos approximation, and some but not all of the special case handling disabled. This is less than satisfactory: an independent method should really be used, but apparently a complete lack of such methods are available. We can’t even use a deliberately naive implementation without special case handling since Legendre’s continued fraction (see below) is unstable for small a and z.

Implementation

These four functions share a common implementation since they are all related via:

1) \(Q(a, x) + P(a, x) = 1 \)

2) \(\Gamma(a, z) + \gamma(a, z) = \Gamma(a) \)

3) \(Q(a, z) = \frac{\Gamma(a, z)}{\Gamma(a)} \), \(P(a, z) = \frac{\gamma(a, z)}{\Gamma(a)} \)

The lower incomplete gamma is computed from its series representation:
\[\gamma(a, x) = x^a e^{-x} \sum_{k=0}^{\infty} \frac{\Gamma(a)}{\Gamma(a+k+1)} x^k = x^a e^{-x} \sum_{k=0}^{\infty} \frac{x^k}{a^{k+1}} \]

4) Or by subtraction of the upper integral from either \(\Gamma(a)\) or 1 when \(x - (1/3x) > a\) and \(x > 1.1/\).

The upper integral is computed from Legendre's continued fraction representation:

\[\Gamma(a, z) = \frac{x^a e^{-x}}{x - a + 1 + \frac{a_k}{b_k + \frac{a_k}{b_{k+1} + \ldots}}} \quad ; \quad a_k = k(a - k) \quad ; \quad b_k = x - a + 2k + 1 \]

5)

When \((x > 1.1)\) or by subtraction of the lower integral from either \(\Gamma(a)\) or 1 when \(x - (1/3x) < a/\).

For \(x < 1.1\) computation of the upper integral is more complex as the continued fraction representation is unstable in this area. However there is another series representation for the lower integral:

\[\gamma(a, x) = x^a \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{(a+k)k!} \]

6) That lends itself to calculation of the upper integral via rearrangement to:

\[\Gamma(a, x) = \frac{\text{tgamma1pm1}(a) - \text{powm1}(x, a)}{a} + x^a \sum_{k=1}^{\infty} (-1)^k \frac{x^k}{(a+k)k!} \]

7) \(\text{tgamma1pm1}(a) = \Gamma(a + 1) - 1\) \(\text{powm1}(x, a) = x^a - 1\)

Refer to the documentation for \(\text{powm1}\) and \(\text{tgamma1pm1}\) for details of their implementation. Note however that the precision of \(\text{tgamma1pm1}\) is capped to either around 35 digits, or to that of the Lanczos approximation associated with type T - if there is one - whichever of the two is the greater. That therefore imposes a similar limit on the precision of this function in this region.

For \(x < 1.1\) the crossover point where the result is \(-0.5\) no longer occurs for \(x \sim y\). Using \(x * 0.75 < a\) as the crossover criterion for \(0.5 < x \ll 1.1\) keeps the maximum value computed (whether it's the upper or lower interval) to around 0.75. Likewise for \(x \ll 0.5\) then using \(-0.4 / \log(x) < a\) as the crossover criterion keeps the maximum value computed to around 0.7 (whether it's the upper or lower interval).

There are two special cases used when \(a\) is an integer or half integer, and the crossover conditions listed above indicate that we should compute the upper integral \(Q\). If \(a\) is an integer in the range \(1 \leq a < 30\) then the following finite sum is used:

\[Q(a, x) = e^{-x} \sum_{n=0}^{a-1} \frac{x^n}{n!} \quad ; \quad a \in \mathbb{N}\]

9) While for half integers in the range \(0.5 \leq a < 30\) then the following finite sum is used:

\[Q(a, x) = \text{erfc}(\sqrt{x}) + e^{-x} \sum_{n=1}^{i} \frac{x^n}{(1 - \frac{1}{2}) \ldots (n - \frac{1}{2})} \quad ; \quad a = i + \frac{1}{2} \quad ; \quad i \in \mathbb{N}\]

10) These are both more stable and more efficient than the continued fraction alternative.

When the argument \(a\) is large, and \(x \sim a\) then the series (4) and continued fraction (5) above are very slow to converge. In this area an expansion due to Temme is used:
\[P(a, x) = \frac{1}{2} \text{erfc}(\sqrt{y}) - \frac{e^{-y}}{\sqrt{2\pi a}} T(a, \lambda) ; \quad \lambda \leq 1 \]

\[Q(a, x) = \frac{1}{2} \text{erfc}(\sqrt{y}) + \frac{e^{-y}}{\sqrt{2\pi a}} T(a, \lambda) ; \quad \lambda > 1 \]

\[\lambda = \frac{x}{a} , \quad y = a(\lambda - 1 - \ln \lambda) = -a(\ln(1 + \sigma) - \sigma) \quad ; \quad \sigma = \frac{x - a}{a} \]

\[T(a, \lambda) = \sum_{k=0}^{N} \left(\sum_{n=0}^{M} C_{k}^{n} z^{k} \right) a^{-k} ; \quad z = \text{sign}(\lambda - 1) \sqrt{2\sigma} \]

The double sum is truncated to a fixed number of terms - to give a specific target precision - and evaluated as a polynomial-of-polynomials. There are versions for up to 128-bit long double precision: types requiring greater precision than that do not use these expansions. The coefficients \(C_{k}^{n} \) are computed in advance using the recurrence relations given by Temme. The zone where these expansions are used is

\[(a > 20) \&\& (a < 200) \&\& \text{fabs}(x-a)/a < 0.4 \]

And:

\[(a > 200) \&\& (\text{fabs}(x-a)/a < 4.5/\sqrt{a}) \]

The latter range is valid for all types up to 128-bit long doubles, and is designed to ensure that the result is larger than \(10^{-6} \), the first range is used only for types up to 80-bit long doubles. These domains are narrower than the ones recommended by either Temme or Didonato and Morris. However, using a wider range results in large and inexact (i.e. computed) values being passed to the \text{exp} and \text{erfc} functions resulting in significantly larger error rates. In other words there is a fine trade off here between efficiency and error. The current limits should keep the number of terms required by (4) and (5) to no more than ~20 at double precision.

For the normalised incomplete gamma functions, calculation of the leading power terms is central to the accuracy of the function. For smallish \(a \) and \(x \) combining the power terms with the Lanczos approximation gives the greatest accuracy:

\[x^a e^{-x} \Gamma(a) = e^{-a} \left(\frac{x}{a + g - 0.5} \right)^a \sqrt{\frac{a + g - 0.5}{e}} \frac{1}{L(a)} \]

In the event that this causes underflow/overflow then the exponent can be reduced by a factor of \(1/a \) and brought inside the power term.

When \(a \) and \(x \) are large, we end up with a very large exponent with a base near one: this will not be computed accurately via the pow function, and taking logs simply leads to cancellation errors. The worst of the errors can be avoided by using:

\[e^{-a} \left(\frac{x}{a + g - 0.5} \right)^a = e^{a \log_1 \text{pmx} \left(\frac{x - a - e^{-0.5}}{a + g - 0.5} \right) \cdot \frac{0.5 - g}{a + g - 0.5}} ; \quad \log_1 \text{pmx} \left(z \right) = \ln(1 + z) - z \]

when \(a-x \) is small and \(a \) and \(x \) are large. There is still a subtraction and therefore some cancellation errors - but the terms are small so the absolute error will be small - and it is absolute rather than relative error that counts in the argument to the \text{exp} function. Note that for sufficiently large \(a \) and \(x \) the errors will still get you eventually, although this does delay the inevitable much longer than other methods. Use of \(\log(1+x) \cdot x \) here is inspired by Temme (see references below).

References

Incomplete Gamma Function Inverses

Synopsis

```cpp
#include <boost/math/special_functions/gamma.hpp>

namespace boost { namespace math {

    template <class T1, class T2>
    calculated-result-type gamma_q_inv(T1 a, T2 q);

    template <class T1, class T2, class Policy>
    calculated-result-type gamma_q_inv(T1 a, T2 q, const Policy&);

    template <class T1, class T2>
    calculated-result-type gamma_p_inv(T1 a, T2 p);

    template <class T1, class T2, class Policy>
    calculated-result-type gamma_p_inv(T1 a, T2 p, const Policy&);

    template <class T1, class T2>
    calculated-result-type gamma_q_inva(T1 x, T2 q);

    template <class T1, class T2, class Policy>
    calculated-result-type gamma_q_inva(T1 x, T2 q, const Policy&);

    template <class T1, class T2>
    calculated-result-type gamma_p_inva(T1 x, T2 p);

    template <class T1, class T2, class Policy>
    calculated-result-type gamma_p_inva(T1 x, T2 p, const Policy&);

}} // namespaces
```

Description

There are four incomplete gamma function inverses which either compute \(x \) given \(a \) and \(p \) or \(q \), or else compute \(a \) given \(x \) and either \(p \) or \(q \).

The return type of these functions is computed using the result type calculation rules when \(T1 \) and \(T2 \) are different types, otherwise the return type is simply \(T1 \).

The final \texttt{Policy} argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.
Tip

When people normally talk about the inverse of the incomplete gamma function, they are talking about inverting on parameter \(x\). These are implemented here as `gamma_p_inv` and `gamma_q_inv`, and are by far the most efficient of the inverses presented here.

The inverse on the \(a\) parameter finds use in some statistical applications but has to be computed by rather brute force numerical techniques and is consequently several times slower. These are implemented here as `gamma_p_inva` and `gamma_q_inva`.

```cpp
template <class T1, class T2>
  calculated-result-type gamma_q_inv(T1 a, T2 q);

template <class T1, class T2, class Policy>
  calculated-result-type gamma_q_inv(T1 a, T2 q, const Policy&);
```

Returns a value \(x\) such that: \(q = \gamma_q(a, x)\);

Requires: \(a > 0\) and \(1 \geq p, q \geq 0\).

```cpp
template <class T1, class T2>
  calculated-result-type gamma_p_inv(T1 a, T2 p);

template <class T1, class T2, class Policy>
  calculated-result-type gamma_p_inv(T1 a, T2 p, const Policy&);
```

Returns a value \(x\) such that: \(p = \gamma_p(a, x)\);

Requires: \(a > 0\) and \(1 \geq p, q \geq 0\).

```cpp
template <class T1, class T2>
  calculated-result-type gamma_q_inva(T1 x, T2 q);

template <class T1, class T2, class Policy>
  calculated-result-type gamma_q_inva(T1 x, T2 q, const Policy&);
```

Returns a value \(a\) such that: \(q = \gamma_q(a, x)\);

Requires: \(x > 0\) and \(1 \geq p, q \geq 0\).

```cpp
template <class T1, class T2>
  calculated-result-type gamma_p_inva(T1 x, T2 p);

template <class T1, class T2, class Policy>
  calculated-result-type gamma_p_inva(T1 x, T2 p, const Policy&);
```

Returns a value \(a\) such that: \(p = \gamma_p(a, x)\);

Requires: \(x > 0\) and \(1 \geq p, q \geq 0\).

Accuracy

The accuracy of these functions doesn’t vary much by platform or by the type \(T\). Given that these functions are computed by iterative methods, they are deliberately "detuned" so as not to be too accurate: it is in any case impossible for these function to be more accurate than the regular forward incomplete gamma functions. In practice, the accuracy of these functions is very similar to that of `gamma_p` and `gamma_q` functions.
Testing

There are two sets of tests:

- Basic sanity checks attempt to "round-trip" from a and x to p or q and back again. These tests have quite generous tolerances: in general both the incomplete gamma, and its inverses, change so rapidly that round tripping to more than a couple of significant digits isn't possible. This is especially true when p or q is very near one: in this case there isn't enough "information content" in the input to the inverse function to get back where you started.

- Accuracy checks using high precision test values. These measure the accuracy of the result, given exact input values.

Implementation

The functions gamma_p_inv and gamma_q_inv share a common implementation.

First an initial approximation is computed using the methodology described in:

Finally, the last few bits are cleaned up using Halley iteration, the iteration limit is set to 2/3 of the number of bits in T, which by experiment is sufficient to ensure that the inverses are at least as accurate as the normal incomplete gamma functions. In testing, no more than 3 iterations are required to produce a result as accurate as the forward incomplete gamma function, and in many cases only one iteration is required.

The functions gamma_p_inva and gamma_q_inva also share a common implementation but are handled separately from gamma_p_inv and gamma_q_inv.

An initial approximation for a is computed very crudely so that $gamma_p(a, x) \approx 0.5$, this value is then used as a starting point for a generic derivative-free root finding algorithm. As a consequence, these two functions are rather more expensive to compute than the gamma_p_inv or gamma_q_inv functions. Even so, the root is usually found in fewer than 10 iterations.

Derivative of the Incomplete Gamma Function

Synopsis

```cpp
#include <boost/math/special_functions/gamma.hpp>

namespace boost { namespace math {

  template <class T1, class T2>
  calculated-result-type gamma_p_derivative(T1 a, T2 x);

  template <class T1, class T2, class Policy>
  calculated-result-type gamma_p_derivative(T1 a, T2 x, const Policy&);

}} // namespaces
```

Description

This function find some uses in statistical distributions: it implements the partial derivative with respect to x of the incomplete gamma function.

$$gamma_p_derivative(a, x) = \frac{\partial}{\partial x} P(a, x) = e^{-x} x^{a-1} \frac{\Gamma(a)}{T(a)}$$

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.
Note that the derivative of the function \(\text{gamma}_q \) can be obtained by negating the result of this function.

The return type of this function is computed using the \textit{result type calculation rules} when \(T_1 \) and \(T_2 \) are different types, otherwise the return type is simply \(T_1 \).

Accuracy

Almost identical to the incomplete gamma function \(\text{gamma}_p \): refer to the documentation for that function for more information.

Implementation

This function just expose some of the internals of the incomplete gamma function \(\text{gamma}_p \): refer to the documentation for that function for more information.

Factorials and Binomial Coefficients

Factorial

Synopsis

```cpp
#include <boost/math/special_functions/factorials.hpp>

namespace boost{ namespace math{

    template <class T>
    T factorial(unsigned i);

    template <class T, class Policy>
    T factorial(unsigned i, const Policy&);

    template <class T>
    T unchecked_factorial(unsigned i);

    template <class T>
    struct max_factorial;

} // namespaces
```

Description

`template <class T>
T factorial(unsigned i);`

`template <class T, class Policy>
T factorial(unsigned i, const Policy&);`

Returns \(i! \).

The final \texttt{Policy} argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the \texttt{policy documentation} for more details.

For \(i \leq \text{max_factorial}<T>::\text{value} \) this is implemented by table lookup, for larger values of \(i \), this function is implemented in terms of \(\text{tgamma} \).

If \(i \) is so large that the result cannot be represented in type \(T \), then calls \texttt{overflow_error}.

template <class T>
T unchecked_factorial(unsigned i);

Returns $i!$.

Internally this function performs table lookup of the result. Further it performs no range checking on the value of i: it is up to the caller to ensure that $i \leq \text{max_factorial}<T>::\text{value}$. This function is intended to be used inside inner loops that require fast table lookup of factorials, but requires care to ensure that argument i never grows too large.

template <class T>
struct max_factorial
{
 static const unsigned value = X;
};

This traits class defines the largest value that can be passed to unchecked_factorial. The member value can be used where integral constant expressions are required: for example to define the size of further tables that depend on the factorials.

Accuracy

For arguments smaller than max_factorial<T>::value the result should be correctly rounded. For larger arguments the accuracy will be the same as for tgamma.

Testing

Basic sanity checks and spot values to verify the data tables: the main tests for the tgamma function handle those cases already.

Implementation

The factorial function is table driven for small arguments, and is implemented in terms of tgamma for larger arguments.

Double Factorial

```cpp
#include <boost/math/special_functions/factorials.hpp>

namespace boost{ namespace math{

    template <class T>
    T double_factorial(unsigned i);

    template <class T, class Policy>
    T double_factorial(unsigned i, const Policy&);

}} // namespaces
```

Returns $i!!$.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

May return the result of overflow_error if the result is too large to represent in type T. The implementation is designed to be optimised for small i where table lookup of $i!$ is possible.

Accuracy

The implementation uses a trivial adaptation of the factorial function, so error rates should be no more than a couple of epsilon higher.
Testing

The spot tests for the double factorial use data generated by functions.wolfram.com.

Implementation

The double factorial is implemented in terms of the factorial and gamma functions using the relations:

\[(2n)!! = 2^n \cdot n!\]

\[(2n+1)!! = (2n+1)! / (2^n \cdot n!)\]

and

\[(2n-1)!! = \Gamma((2n+1)/2) / (2^n / \sqrt{\pi})\]

Rising Factorial

```cpp
#include <boost/math/special_functions/factorials.hpp>

namespace boost { namespace math {

    template <class T> calculated-result-type rising_factorial(T x, int i);
    template <class T, class Policy> calculated-result-type rising_factorial(T x, int i, const Policy&);

}} // namespaces
```

Returns the rising factorial of \(x\) and \(i\):

\[\text{rising_factorial}(x, i) = \Gamma(x + i) / \Gamma(x)\]

or

\[\text{rising_factorial}(x, i) = x(x+1)(x+2)(x+3)...(x+i)\]

Note that both \(x\) and \(i\) can be negative as well as positive.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

May return the result of overflow_error if the result is too large to represent in type \(T\).

The return type of these functions is computed using the result type calculation rules: the type of the result is double if \(T\) is an integer type, otherwise the type of the result is \(T\).

Accuracy

The accuracy will be the same as the tgamma_delta_ratio function.

Testing

The spot tests for the rising factorials use data generated by functions.wolfram.com.
Implementation

Rising and falling factorials are implemented as ratios of gamma functions using tgamma_delta_ratio. Optimisations for small integer arguments are handled internally by that function.

Falling Factorial

```cpp
#include <boost/math/special_functions/factorials.hpp>

namespace boost{ namespace math{

    template <class T>
    calculated-result-type falling_factorial(T x, unsigned i);

    template <class T, class Policy>
    calculated-result-type falling_factorial(T x, unsigned i, const Policy&);

}} // namespaces
```

Returns the falling factorial of \(x \) and \(i \):

\[
\text{falling_factorial}(x, i) = x(x-1)(x-2)(x-3)...(x-i+1)
\]

Note that this function is only defined for positive \(i \), hence the unsigned second argument. Argument \(x \) can be either positive or negative however.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

May return the result of overflow_error if the result is too large to represent in type \(T \).

The return type of these functions is computed using the result type calculation rules; the type of the result is double if \(T \) is an integer type, otherwise the type of the result is \(T \).

Accuracy

The accuracy will be the same as the tgamma_delta_ratio function.

Testing

The spot tests for the falling factorials use data generated by functions.wolfram.com.

Implementation

Rising and falling factorials are implemented as ratios of gamma functions using tgamma_delta_ratio. Optimisations for small integer arguments are handled internally by that function.
Binomial Coefficients

```cpp
#include <boost/math/special_functions/binomial.hpp>

namespace boost { namespace math {

    template <class T>
    T binomial_coefficient(unsigned n, unsigned k);

    template <class T, class Policy>
    T binomial_coefficient(unsigned n, unsigned k, const Policy&);

}} // namespaces
```

Returns the binomial coefficient: \(\binom{n}{k} \).

Requires \(k \leq n \).

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

May return the result of `overflow_error` if the result is too large to represent in type `T`.

Accuracy

The accuracy will be the same as for the factorials for small arguments (i.e. no more than one or two epsilon), and the `beta` function for larger arguments.

Testing

The spot tests for the binomial coefficients use data generated by functions.wolfram.com.

Implementation

Binomial coefficients are calculated using table lookup of factorials where possible using:

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

Otherwise it is implemented in terms of the `beta` function using the relations:

\[
\binom{n}{k} = \frac{1}{k \cdot \beta(k, n-k+1)}
\]

and

\[
\binom{n}{k} = \frac{1}{(n-k) \cdot \beta(k+1, n-k)}
\]
Beta Functions

Beta

Synopsis

```cpp
#include <boost/math/special_functions/beta.hpp>

namespace boost { namespace math {

template <class T1, class T2>
calculated-result-type beta(T1 a, T2 b);

template <class T1, class T2, class Policy>
calculated-result-type beta(T1 a, T2 b, const Policy&);

}} // namespaces
```

Description

The beta function is defined by:

\[\beta(a, b) = B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)} \]

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

There are effectively two versions of this function internally: a fully generic version that is slow, but reasonably accurate, and a much more efficient approximation that is used where the number of digits in the significand of `T` correspond to a certain Lanczos approximation. In practice any built-in floating-point type you will encounter has an appropriate Lanczos approximation defined for it. It is also possible, given enough machine time, to generate further Lanczos approximation's using the program `libs/math/tools/lanczos_generator.cpp`.

The return type of these functions is computed using the result type calculation rules when T1 and T2 are different types.
Accuracy

The following table shows peak errors for various domains of input arguments, along with comparisons to the GSL-1.9 and Cephes libraries. Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error.

Table 22. Peak Errors In the Beta Function

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>Errors in range</th>
<th>Errors in range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.4 < a, b < 100</td>
<td>1e-6 < a, b < 36</td>
</tr>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=99 Mean=22</td>
<td>Peak=10.7 Mean=2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(GSL Peak=1178 Mean=238)</td>
<td>(Cephes=1612)</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA32, g++ 3.4.4</td>
<td>Peak=112.1 Mean=26.9</td>
<td>Peak=15.8 Mean=3.6</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64, g++ 3.4.4</td>
<td>Peak=61.4 Mean=19.5</td>
<td>Peak=12.2 Mean=3.6</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=42.03 Mean=13.94</td>
<td>Peak=9.8 Mean=3.1</td>
</tr>
</tbody>
</table>

Note that the worst errors occur when a or b are large, and that when this is the case the result is very close to zero, so absolute errors will be very small.

Testing

A mixture of spot tests of exact values, and randomly generated test data are used: the test data was computed using NTL::RR at 1000-bit precision.

Implementation

Traditional methods of evaluating the beta function either involve evaluating the gamma functions directly, or taking logarithms and then exponentiating the result. However, the former is prone to overflows for even very modest arguments, while the latter is prone to cancellation errors. As an alternative, if we regard the gamma function as a white-box containing the Lanczos approximation, then we can combine the power terms:

$$\text{beta}(a, b) = \left(\frac{a + g - 0.5}{a + b + g - 0.5} \right)^{a - 0.5} \left(\frac{b + g - 0.5}{a + b + g - 0.5} \right)^b \sqrt{\frac{e}{b + g - 0.5}} \frac{L(a)L(b)}{L(c)}$$

which is almost the ideal solution, however almost all of the error occurs in evaluating the power terms when a or b are large. If we assume that $a > b$ then the larger of the two power terms can be reduced by a factor of b, which immediately cuts the maximum error in half:

$$\text{beta}(a, b) = \left(\frac{a + g - 0.5}{a + b + g - 0.5} \right)^{a - b - 0.5} \left(\frac{(a + g - 0.5)(b + g - 0.5)}{(a + b + g - 0.5)^2} \right)^b \sqrt{\frac{e}{b + g - 0.5}} \frac{L(a)L(b)}{L(c)}$$

This may not be the final solution, but it is very competitive compared to other implementation methods.

The generic implementation - where no Lanczos approximation approximation is available - is implemented in a very similar way to the generic version of the gamma function. Again in order to avoid numerical overflow the power terms that prefix the series and continued fraction parts are collected together into:

$$e^{na-nb} \left(\frac{la}{lc} \right)^a \left(\frac{lb}{lc} \right)^b$$
where \(l_a, l_b \) and \(l_c \) are the integration limits used for \(a, b, \) and \(a+b \).

There are a few special cases worth mentioning:

When \(a \) or \(b \) are less than one, we can use the recurrence relations:

\[
\beta(a, b) = \frac{(a+b)}{b} \beta(a, b+1)
\]

\[
\frac{(a+b)(a+b+1)}{ab} \beta(a+1, b+1)
\]

to move to a more favorable region where they are both greater than 1.

In addition:

\[
\text{if } a = 1 \quad \text{then: } \beta(a, b) = \frac{1}{b}
\]

Incomplete Beta Functions

Synopsis

```cpp
#include <boost/math/special_functions/beta.hpp>
namespace boost { namespace math {

template <class T1, class T2, class T3>
calculated-result-type ibeta(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta(T1 a, T2 b, T3 x, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type ibetac(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac(T1 a, T2 b, T3 x, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type beta(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type beta(T1 a, T2 b, T3 x, const Policy&);

template <class T1, class T2, class T3>
calculated-result-type betac(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type betac(T1 a, T2 b, T3 x, const Policy&);
}
```  

Description

There are four **incomplete beta functions** : two are normalised versions (also known as **regularized** beta functions) that return values in the range \([0, 1]\), and two are non-normalised and return values in the range \([0, \beta(a, b)]\). Users interested in statistical applications should use the normalised (or **regularized**) versions (ibeta and ibetac).
All of these functions require $0 \leq x \leq 1$.

The normalized functions `ibeta` and `ibetac` require $a, b \geq 0$, and in addition that not both a and b are zero.

The functions `beta` and `betac` require $a, b > 0$.

The return type of these functions is computed using the result type calculation rules when T1, T2 and T3 are different types.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

```
template <class T1, class T2, class T3>
calculated-result-type ibeta(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta(T1 a, T2 b, T3 x, const Policy&);
```

Returns the normalised incomplete beta function of a, b and x:

\[
\text{ibeta}(a, b, x) = \frac{1}{\text{beta}(a, b)} \int_0^x t^{a-1} (1-t)^{b-1} \, dt
\]

```
template <class T1, class T2, class T3>
calculated-result-type ibetac(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac(T1 a, T2 b, T3 x, const Policy&);
```

Returns the normalised complement of the incomplete beta function of a, b and x:

\[
\text{ibetac}(a, b, x) = 1 - I_x(a, b) = I_{1-x}(b, a)
\]
template <class T1, class T2, class T3> calculated-result-type beta(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy> calculated-result-type beta(T1 a, T2 b, T3 x, const Policy&);

Returns the full (non-normalised) incomplete beta function of \(a, b\) and \(x\):

\[
\beta(a, b, x) = B_x(a, b) = \int_0^x t^{a-1} (1-t)^{b-1} \, dt
\]

template <class T1, class T2, class T3> calculated-result-type betac(T1 a, T2 b, T3 x);

template <class T1, class T2, class T3, class Policy> calculated-result-type betac(T1 a, T2 b, T3 x, const Policy&);

Returns the full (non-normalised) complement of the incomplete beta function of \(a, b\) and \(x\):

\[
\beta_c(a, b, x) = 1 - B_x(a, b) = B_{1-x}(b, a)
\]

Accuracy

The following tables give peak and mean relative errors in over various domains of \(a, b\) and \(x\), along with comparisons to the GSL-1.9 and Cephes libraries. Note that only results for the widest floating-point type on the system are given as narrower types have effectively zero error.

Note that the results for 80 and 128-bit long doubles are noticeably higher than for doubles: this is because the wider exponent range of these types allow more extreme test cases to be tested. For example expected results that are zero at double precision, may be finite but exceptionally small with the wider exponent range of the long double types.

Table 23. Errors In the Function ibeta(a,b,x)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>(0 < a,b < 10) and (0 < x < 1)</th>
<th>(0 < a,b < 100) and (0 < x < 1)</th>
<th>(1x10^{-5} < a,b < 1x10^5) and (0 < x < 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=42.3 Mean=2.9 (GSL Peak=682 Mean=32.5)</td>
<td>Peak=108 Mean=16.6 (GSL Peak=690 Mean=151)</td>
<td>Peak=4x10^5 Mean=203 (GSL Peak=3x10^5 Mean=2x10^4)</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA32, gcc-3.4.4</td>
<td>Peak=21.9 Mean=3.1</td>
<td>Peak=270.7 Mean=26.8</td>
<td>Peak=5x10^4 Mean=3x10^3</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4.4</td>
<td>Peak=15.4 Mean=3.0</td>
<td>Peak=112.9 Mean=14.3</td>
<td>Peak=5x10^4 Mean=3x10^3</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=20.9 Mean=2.6</td>
<td>Peak=88.1 Mean=14.3</td>
<td>Peak=2x10^4 Mean=1x10^3</td>
</tr>
</tbody>
</table>
Table 24. Errors In the Function ibetac(a,b,x)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>0 < a,b < 10 and 0 < x < 1</th>
<th>0 < a,b < 100 and 0 < x < 1</th>
<th>1x10^5 < a,b < 1x10^5 and 0 < x < 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=13.9 Mean=2.0</td>
<td>Peak=56.2 Mean=14</td>
<td>Peak=3x10^3 Mean=159</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA32, gcc-3.4.4</td>
<td>Peak=21.1 Mean=3.6</td>
<td>Peak=221.7 Mean=25.8</td>
<td>Peak=9x10^3 Mean=3x10^3</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4.4</td>
<td>Peak=10.6 Mean=2.2</td>
<td>Peak=73.9 Mean=11.9</td>
<td>Peak=9x10^5 Mean=3x10^3</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=9.9 Mean=2.6</td>
<td>Peak=117.7 Mean=15.1</td>
<td>Peak=3x10^5 Mean=1x10^3</td>
</tr>
</tbody>
</table>

Table 25. Errors In the Function beta(a, b, x)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>0 < a,b < 10 and 0 < x < 1</th>
<th>0 < a,b < 100 and 0 < x < 1</th>
<th>1x10^5 < a,b < 1x10^5 and 0 < x < 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=39 Mean=2.9</td>
<td>Peak=91 Mean=12.7</td>
<td>Peak=635 Mean=25</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA32, gcc-3.4.4</td>
<td>Peak=26 Mean=3.6</td>
<td>Peak=180.7 Mean=30.1</td>
<td>Peak~7x10^3 Mean=3x10^3</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4.4</td>
<td>Peak=13 Mean=2.4</td>
<td>Peak=67.1 Mean=13.4</td>
<td>Peak~7x10^5 Mean=3x10^3</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=27.3 Mean=3.6</td>
<td>Peak=49.8 Mean=9.1</td>
<td>Peak~6x10^5 Mean=3x10^3</td>
</tr>
</tbody>
</table>

Table 26. Errors In the Function betac(a,b,x)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>0 < a,b < 10 and 0 < x < 1</th>
<th>0 < a,b < 100 and 0 < x < 1</th>
<th>1x10^5 < a,b < 1x10^5 and 0 < x < 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=12.0 Mean=2.4</td>
<td>Peak=91 Mean=15</td>
<td>Peak=4x10^3 Mean=113</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA32, gcc-3.4.4</td>
<td>Peak=19.8 Mean=3.8</td>
<td>Peak=295.1 Mean=33.9</td>
<td>Peak~1x10^5 Mean=5x10^3</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-3.4.4</td>
<td>Peak=11.2 Mean=2.4</td>
<td>Peak=63.5 Mean=13.6</td>
<td>Peak~1x10^5 Mean=5x10^3</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=15.6 Mean=3.5</td>
<td>Peak=39.8 Mean=8.9</td>
<td>Peak~9x10^5 Mean=5x10^3</td>
</tr>
</tbody>
</table>
Testing

There are two sets of tests: spot tests compare values taken from Mathworld's online function evaluator with this implementation: they provide a basic "sanity check" for the implementation, with one spot-test in each implementation-domain (see implementation notes below).

Accuracy tests use data generated at very high precision (with NTL RR class set at 1000-bit precision), using the "textbook" continued fraction representation (refer to the first continued fraction in the implementation discussion below). Note that this continued fraction is not used in the implementation, and therefore we have test data that is fully independent of the code.

Implementation

This implementation is closely based upon "Algorithm 708; Significant digit computation of the incomplete beta function ratios", DiDonato and Morris, ACM, 1992.

All four of these functions share a common implementation: this is passed both x and y, and can return either p or q where these are related by:

\[p = 1 - q = I_x(a, b) = 1 - I_y(b, a) \quad ; \quad y = 1 - x \]

so at any point we can swap a for b, x for y and p for q if this results in a more favourable position. Generally such swaps are performed so that we always compute a value less than 0.9: when required this can then be subtracted from 1 without undue cancellation error.

The following continued fraction representation is found in many textbooks but is not used in this implementation - it’s both slower and less accurate than the alternatives - however it is used to generate test data:

\[
I_x(a, b) = \frac{x^a}{B(a, b)} \left(\frac{1}{1 + \frac{d_1}{1 + \frac{d_2}{1 + \ldots}}} \right)
\]

\[d_{2m+1} = \frac{-(a+m)(a+b+m)x}{(a+2m)(a+2m+1)} \]

\[d_{2m} = \frac{m(b-m)x}{(a+2m-1)(a+2m)} \]

The following continued fraction is due to Didonato and Morris, and is used in this implementation when a and b are both greater than 1:

\[
I_x(a, b) = \frac{x^a}{B(a, b)} \left(\frac{a_1}{\beta_1 + \frac{a_2}{\beta_2 + \frac{a_3}{\beta_3 + \ldots}}} \right)
\]

\[a_1 = 1 \quad , \quad a_{m+1} = \frac{(a+m-1)(a+b+m-1)m(b-m)x^2}{(a+2m-1)^2} \]

\[\beta_{m+1} = m + \frac{m(b-m)x}{a+2m-1} + \frac{(a+m)(a-(a+b)x+1+m(2-x))}{a+2m+1} \]

For smallish b and x then a series representation can be used:

\[
I_x(a, b) = \frac{x^a}{B(a, b)} \sum_{n=1}^{\infty} \frac{(1-b)^n x^n}{(a+n)n!}
\]

When b << a then the transition from 0 to 1 occurs very close to x = 1 and some care has to be taken over the method of computation, in that case the following series representation is used:
\[I_x(a, b) \approx M \sum_{n=0}^{\infty} p_n J_n(b, u) ; \ a > b \]

\[M = \frac{H(b, u)\Gamma(a + b)}{\Gamma(a)T^b} \]

\[H(c, u) = \frac{e^{-uc}}{\Gamma(a)} \]

\[T = a + \frac{b - 1}{2} \]

\[u = -T\ln(x) \]

\[p_0 = 1 \]

\[p_n = \frac{(b-1)}{(2n-1)!} + \pi \sum_{m=1}^{n-1} \frac{(mb-n)}{(2m+1)!} p_{n-m} \]

Where \(Q(a,x) \) is an incomplete gamma function. Note that this method relies on keeping a table of all the \(p_n \) previously computed, which does limit the precision of the method, depending upon the size of the table used.

When \(a \) and \(b \) are both small integers, then we can relate the incomplete beta to the binomial distribution and use the following finite sum:

\[I_x(a, b) = \sum_{i=k+1}^{N} \frac{N!}{i!(N-i)!} x^i y^{(N-i)} ; \ k = a - 1, N = a + b - 1 \]

Finally we can sidestep difficult areas, or move to an area with a more efficient means of computation, by using the duplication formulae:

\[I_x(a, b) = I_x(a + n, b) + x^a(1-x)^b \sum_{j=1}^{n} \frac{\Gamma(a+b+j-1)}{\Gamma(b)(a+j)} x^{-1} \]

\[= I_x(a + n, b) + \frac{x^a(1-x)^b}{a} \sum_{j=0}^{n-1} \frac{(a+b-j)}{(a+1)} x^j \]

\[B_x(a, b) = \frac{(a+b)^n}{a^n} B_x(a + n, b) + \frac{x^a(1-x)^b}{a} \sum_{j=0}^{n-1} \frac{(a+b-j)}{(a+1)} x^j \]

The domains of \(a, b \) and \(x \) for which the various methods are used are identical to those described in the Didonato and Morris TOMS 708 paper.
The Incomplete Beta Function Inverses

```cpp
#include <boost/math/special_functions/beta.hpp>

namespace boost { namespace math {

    template <class T1, class T2, class T3>
    calculated-result-type ibeta_inv(T1 a, T2 b, T3 p);

    template <class T1, class T2, class T3, class Policy>
    calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, const Policy&);

    template <class T1, class T2, class T3, class T4>
    calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, T4* py);

    template <class T1, class T2, class T3, class T4, class Policy>
    calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, T4* py, const Policy&);

    template <class T1, class T2, class T3>
    calculated-result-type ibeta_inva(T1 b, T2 x, T3 p);

    template <class T1, class T2, class T3, class Policy>
    calculated-result-type ibeta_inva(T1 b, T2 x, T3 p, const Policy&);

    template <class T1, class T2, class T3>
    calculated-result-type ibeta_inva(T1 b, T2 x, T3 q);

    template <class T1, class T2, class T3, class Policy>
    calculated-result-type ibeta_inva(T1 b, T2 x, T3 q, const Policy&);

    template <class T1, class T2, class T3>
    calculated-result-type ibeta_invb(T1 a, T2 x, T3 p);

    template <class T1, class T2, class T3, class Policy>
    calculated-result-type ibeta_invb(T1 a, T2 x, T3 p, const Policy&);

    template <class T1, class T2, class T3>
    calculated-result-type ibeta_invb(T1 a, T2 x, T3 q);

    template <class T1, class T2, class T3, class Policy>
    calculated-result-type ibeta_invb(T1 a, T2 x, T3 q, const Policy&);

}} // namespaces
```

Description

There are six **incomplete beta function inverses** which allow you solve for any of the three parameters to the incomplete beta, starting from either the result of the incomplete beta (p) or its complement (q).
The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Tip

When people normally talk about the inverse of the incomplete beta function, they are talking about inverting on parameter x. These are implemented here as `ibeta_inv` and `ibeta_inv`, and are by far the most efficient of the inverses presented here.

The inverses on the a and b parameters find use in some statistical applications, but have to be computed by rather brute force numerical techniques and are consequently several times slower. These are implemented here as `ibeta_inv` and `ibeta_inv_b`, and complement versions `ibeta_inv_a` and `ibeta_inv_b`.

The return type of these functions is computed using the result type calculation rules when called with arguments $T_1 \ldots T_N$ of different types.

```cpp
template <class T1, class T2, class T3>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, const Policy&);

template <class T1, class T2, class T3, class T4>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, T4* py);

template <class T1, class T2, class T3, class T4, class Policy>
calculated-result-type ibeta_inv(T1 a, T2 b, T3 p, T4* py, const Policy&);
```

Returns a value x such that: $p = \text{ibeta}(a, b, x)$; and sets $*py = 1 - x$ when the py parameter is provided and is non-null. Note that internally this function computes whichever is the smaller of x and $1-x$, and therefore the value assigned to $*py$ is free from cancellation errors. That means that even if the function returns 1, the value stored in $*py$ may be non-zero, albeit very small.

Requires: $a,b > 0$ and $0 \leq p \leq 1$.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

```cpp
template <class T1, class T2, class T3>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q, const Policy&);

template <class T1, class T2, class T3, class T4>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q, T4* py);

template <class T1, class T2, class T3, class T4, class Policy>
calculated-result-type ibetac_inv(T1 a, T2 b, T3 q, T4* py, const Policy&);
```

Returns a value x such that: $q = \text{ibetac}(a, b, x)$; and sets $*py = 1 - x$ when the py parameter is provided and is non-null. Note that internally this function computes whichever is the smaller of x and $1-x$, and therefore the value assigned to $*py$ is free from cancellation errors. That means that even if the function returns 1, the value stored in $*py$ may be non-zero, albeit very small.

Requires: $a,b > 0$ and $0 \leq q \leq 1$.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.
Returns a value a such that: $p = \text{ibeta}(a, b, x)$;

Requires: $b > 0$, $0 < x < 1$ and $0 \leq p \leq 1$.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Returns a value a such that: $q = \text{ibeta}(a, b, x)$;

Requires: $b > 0$, $0 < x < 1$ and $0 \leq q \leq 1$.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Returns a value b such that: $p = \text{ibeta}(a, b, x)$;

Requires: $a > 0$, $0 < x < 1$ and $0 \leq p \leq 1$.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Returns a value b such that: $q = \text{ibeta}(a, b, x)$;

Requires: $a > 0$, $0 < x < 1$ and $0 \leq q \leq 1$.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Accuracy

The accuracy of these functions should closely follow that of the regular forward incomplete beta functions. However, note that in some parts of their domain, these functions can be extremely sensitive to changes in input, particularly when the argument p (or its complement q) is very close to 0 or 1.
Testing

There are two sets of tests:

• Basic sanity checks attempt to "round-trip" from \(a, b\) and \(x\) to \(p\) or \(q\) and back again. These tests have quite generous tolerances: in general both the incomplete beta and its inverses change so rapidly, that round tripping to more than a couple of significant digits isn't possible. This is especially true when \(p\) or \(q\) is very near one: in this case there isn't enough "information content" in the input to the inverse function to get back where you started.

• Accuracy checks using high precision test values. These measure the accuracy of the result, given exact input values.

Implementation of ibeta_inv and ibetac_inv

These two functions share a common implementation.

First an initial approximation to \(x\) is computed then the last few bits are cleaned up using Halley iteration. The iteration limit is set to 12 of the number of bits in \(T\); which by experiment is sufficient to ensure that the inverses are at least as accurate as the normal incomplete beta functions. Up to 5 iterations may be required in extreme cases, although normally only one or two are required. Further, the number of iterations required decreases with increasing /\(a\) and \(b\) (which generally form the more important use cases).

The initial guesses used for iteration are obtained as follows:

Firstly recall that:

\[p = 1 - q = I_x(a, b) = 1 - I_y(b, a) \quad ; \quad y = 1 - x \]

We may wish to start from either \(p\) or \(q\), and to calculate either \(x\) or \(y\). In addition at any stage we can exchange \(a\) for \(b\), \(p\) for \(q\), and \(x\) for \(y\) if it results in a more manageable problem.

For \(a + b \geq 5\) the initial guess is computed using the methods described in:

The nearly symmetrical case (section 2 of the paper) is used for

\[I_x(a, a + \beta) \quad ; \quad \beta < \sqrt{a} \]

and involves solving the inverse error function first. The method is accurate to at least 2 decimal digits when \(a = 5\) rising to at least 8 digits when \(a = 10^5\).

The general error function case (section 3 of the paper) is used for

\[I_x(a, b) \quad ; \quad 0.2 \leq \frac{a}{a + b} \leq 0.8 \]

and again expresses the inverse incomplete beta in terms of the inverse of the error function. The method is accurate to at least 2 decimal digits when \(a + b = 5\) rising to 11 digits when \(a + b = 10^5\). However, when the result is expected to be very small, and when \(a + b\) is also small, then its accuracy tails off, in this case when \(p^{1/a} < 0.0025\) then it is better to use the following as an initial estimate:

\[I_x^{-1}(a, b) \approx (apB(a, b))^{1/p} \]

Finally the for all other cases where \(a + b > 5\) the method of section 4 of the paper is used. This expresses the inverse incomplete beta in terms of the inverse of the incomplete gamma function, and is therefore significantly more expensive to compute than the other cases. However the method is accurate to at least 3 decimal digits when \(a = 5\) rising to at least 10 digits when \(a = 10^5\). This method is limited to \(a > b\), and therefore we need to perform an exchange \(a\) for \(b\), \(p\) for \(q\) and \(x\) for \(y\) when this is not the case. In addition when \(p\) is close to 1 the method is inaccurate should we actually want \(y\) rather than \(x\) as output. Therefore when \(q\) is small \((q^{1/p} < 10^{-3})\) we use:
\[y = 1 - \Gamma^{-1}_x(a, b) \approx (b q B(a, b))^{\frac{1}{b}} \]

which is both cheaper to compute than the full method, and a more accurate estimate on \(q \).

When \(a \) and \(b \) are both small there is a distinct lack of information in the literature on how to proceed. I am extremely grateful to Prof Nico Temme who provided the following information with a great deal of patience and explanation on his part. Any errors that follow are entirely my own, and not Prof Temme’s.

When \(a \) and \(b \) are both less than 1, then there is a point of inflection in the incomplete beta at point \(x_s = (1 - a) / (2 - a - b) \). Therefore if \(p > I_x(a, b) \) we swap \(a \) for \(b \), \(p \) for \(q \) and \(x \) for \(y \), so that now we always look for a point \(x \) below the point of inflection \(x_s \), and on a convex curve. An initial estimate for \(x \) is made with:

\[
x_0 = \frac{x_g}{1 + x_g} \quad ; \quad x_g = (a p B(a, b))^{\frac{1}{a}}
\]

which is provably below the true value for \(x \): Newton iteration will therefore smoothly converge on \(x \) without problems caused by overshooting etc.

When \(a \) and \(b \) are both greater than 1, but \(a + b \) is too small to use the other methods mentioned above, we proceed as follows. Observe that there is a point of inflection in the incomplete beta at \(x_s = (1 - a) / (2 - a - b) \). Therefore if \(p > I_x(a, b) \) we swap \(a \) for \(b \), \(p \) for \(q \) and \(x \) for \(y \), so that now we always look for a point \(x \) below the point of inflection \(x_s \), and on a concave curve. An initial estimate for \(x \) is made with:

\[
\Gamma^{-1}_x(a, b) \approx (a p B(a, b))^{\frac{1}{b}} + \frac{b - 1}{a + 1} (a p B(a, b))^{\frac{3}{b}} + \frac{(b - 1)(a^2 + 3 b a - a + 5 b - 4)}{2(a + 1)^2(a + 2)} (a p B(a, b))^{\frac{3}{b}}
\]

when \(b \) and \(x \) are both small (I've used \(b < a \) and \(x < 0.2 \)). This actually under-estimates \(x \), which drops us on the wrong side of \(x \) for Newton iteration to converge monotonically. However, use of higher derivatives and Halley iteration keeps everything under control.

The final case to be considered if when one of \(a \) and \(b \) is less than or equal to 1, and the other greater that 1. Here, if \(b < a \) we swap \(a \) for \(b \), \(p \) for \(q \) and \(x \) for \(y \). Now the curve of the incomplete beta is convex with no points of inflection in \([0,1]\). For small \(p \), \(x \) can be estimated using

\[
\Gamma^{-1}_x(a, b) \approx (a p B(a, b))^{\frac{1}{b}}
\]

which under-estimates \(x \), and drops us on the right side of the true value for Newton iteration to converge monotonically. However, when \(p \) is large this can quite badly underestimate \(x \). This is especially an issue when we really want to find \(y \), in which case this method can be an arbitrary number of order of magnitudes out, leading to very poor convergence during iteration.

Things can be improved by considering the incomplete beta as a distorted quarter circle, and estimating \(y \) from:

\[
y = \left(1 - p^{b B(a, b)}\right)^{\frac{1}{b}}
\]

This doesn't guarantee that we will drop in on the right side of \(x \) for monotonic convergence, but it does get us close enough that Halley iteration rapidly converges on the true value.

Implementation of inverses on the a and b parameters

These four functions share a common implementation.
First an initial approximation is computed for \(a\) or \(b\): where possible this uses a Cornish-Fisher expansion for the negative binomial distribution to get within around 1 of the result. However, when \(a\) or \(b\) are very small the Cornish Fisher expansion is not usable, in this case the initial approximation is chosen so that \(I_x(a, b)\) is near the middle of the range \([0, 1]\).

This initial guess is then used as a starting value for a generic root finding algorithm. The algorithm converges rapidly on the root once it has been bracketed, but bracketing the root may take several iterations. A better initial approximation for \(a\) or \(b\) would improve these functions quite substantially: currently 10-20 incomplete beta function invocations are required to find the root.

Derivative of the Incomplete Beta Function

Synopsis

```cpp
#include <boost/math/special_functions/beta.hpp>

namespace boost{ namespace math{

  template <class T1, class T2, class T3>
  calculated-result-type ibeta_derivative(T1 a, T2 b, T3 x);

  template <class T1, class T2, class T3, class Policy>
  calculated-result-type ibeta_derivative(T1 a, T2 b, T3 x, const Policy&);

}} // namespaces
```

Description

This function finds some uses in statistical distributions: it computes the partial derivative with respect to \(x\) of the incomplete beta function \(I_x(a, b)\).

\[
\frac{\partial}{\partial x} I_x(a, b) = \frac{(1 - x)^{b-1} x^{a-1}}{B(a, b)}
\]

The return type of this function is computed using the result type calculation rules when \(T1\), \(T2\) and \(T3\) are different types.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Accuracy

Almost identical to the incomplete beta function \(I_x(a, b)\).

Implementation

This function just expose some of the internals of the incomplete beta function \(I_x(a, b)\): refer to the documentation for that function for more information.
Error Functions

Synopsis

```cpp
#include <boost/math/special_functions/erf.hpp>

namespace boost { namespace math {

    template <class T>
    calculated-result-type erf(T z);

    template <class T, class Policy>
    calculated-result-type erf(T z, const Policy&);

    template <class T>
    calculated-result-type erfc(T z);

    template <class T, class Policy>
    calculated-result-type erfc(T z, const Policy&);

}} // namespaces
```

The return type of these functions is computed using the result type calculation rules: the return type is double if T is an integer type, and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Description

```cpp
    template <class T>
    calculated-result-type erf(T z);

    template <class T, class Policy>
    calculated-result-type erf(T z, const Policy&);
```

Returns the error function erf of z:

\[
 \text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^2} dt
\]
template <class T>
calculated-result-type erfc(T z);

template <class T, class Policy>
calculated-result-type erfc(T z, const Policy&);

Returns the complement of the error function of \(z \):

\[
\text{erfc}(z) = 1 - \text{erf}(z)
\]

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along with comparisons to the GSL-1.9, GNU C Lib, HP-UX C Library and Cephes libraries. Unless otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.
Testing

The tests for these functions come in two parts: basic sanity checks use spot values calculated using Mathworld's online evaluator, while accuracy checks use high-precision test values calculated at 1000-bit precision with NTL::RR and this implementation. Note that the generic and type-specific versions of these functions use differing implementations internally, so this gives us reasonably independent test data. Using our test data to test other "known good" implementations also provides an additional sanity check.
Implementation

All versions of these functions first use the usual reflection formulas to make their arguments positive:

\[
\begin{align*}
\text{erf}(-z) &= 1 - \text{erf}(z); \\
\text{erfc}(-z) &= 2 - \text{erfc}(z); \quad \text{// preferred when } -z < -0.5 \\
\text{erfc}(-z) &= 1 + \text{erf}(z); \quad \text{// preferred when } -0.5 \leq -z < 0
\end{align*}
\]

The generic versions of these functions are implemented in terms of the incomplete gamma function.

When the significand (mantissa) size is recognised (currently for 53, 64 and 113-bit reals, plus single-precision 24-bit handled via promotion to double) then a series of rational approximations devised by JM are used.

For \(z \leq 0.5 \) then a rational approximation to \(\text{erf} \) is used, based on the observation that \(\text{erf} \) is an odd function and therefore \(\text{erf} \) is calculated using:

\[
\text{erf}(z) = z \times (C + R(z^{*}z));
\]

where the rational approximation \(R(z^{*}z) \) is optimised for absolute error: as long as its absolute error is small enough compared to the constant \(C \), then any round-off error incurred during the computation of \(R(z^{*}z) \) will effectively disappear from the result. As a result the error for \(\text{erf} \) and \(\text{erfc} \) in this region is very low: the last bit is incorrect in only a very small number of cases.

For \(z > 0.5 \) we observe that over a small interval \([a, b)\) then:

\[
\text{erfc}(z) \times \exp(z^{*}z) \times z \sim c
\]

for some constant \(c \).

Therefore for \(z > 0.5 \) we calculate \(\text{erfc} \) using:

\[
\text{erfc}(z) = \exp(-z^{*}z) \times (C + R(z - B)) / z;
\]

Again \(R(z - B) \) is optimised for absolute error, and the constant \(C \) is the average of \(\text{erfc}(z) \times \exp(z^{*}z) \times z \) taken at the endpoints of the range. Once again, as long as the absolute error in \(R(z - B) \) is small compared to \(C \) then \(C + R(z - B) \) will be correctly rounded, and the error in the result will depend only on the accuracy of the exp function. In practice, in all but a very small number of cases, the error is confined to the last bit of the result. The constant \(B \) is chosen so that the left hand end of the range of the rational approximation is 0.

For large \(z \) over a range \([a, +\infty]\) the above approximation is modified to:
erfc(z) = exp(-z^2) * (C + R(1 / z)) / z;

Error Function Inverses

Synopsis

```cpp
#include <boost/math/special_functions/erf.hpp>

namespace boost::math{
    namespace
    {
        template <class T>
        calculated-result-type erf_inv(T p);

        template <class T, class Policy>
        calculated-result-type erf_inv(T p, const Policy&);

        template <class T>
        calculated-result-type erfc_inv(T p);

        template <class T, class Policy>
        calculated-result-type erfc_inv(T p, const Policy&);
    }
}
```

The return type of these functions is computed using the *result type calculation rules*: the return type is `double` if `T` is an integer type, and `T` otherwise.

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Description

```cpp
template <class T>
calculated-result-type erf_inv(T z);

template <class T, class Policy>
calculated-result-type erf_inv(T z, const Policy&);
```

Returns the *inverse error function* of `z`, that is a value `x` such that:

...
\[p = \text{erf}(x); \]

erf_inv

\[
\begin{array}{c|c|c|c}
 z & -3 & -2 & -1 \\
 \hline
 \text{erf}_\text{inv}(z) & 0 & 0 & 0 \\
\end{array}
\]

\[\text{template } \langle \text{class T} \rangle \]
\[\text{calculated-result-type } \text{erfc}_\text{inv}(T z); \]

\[\text{template } \langle \text{class T, class Policy} \rangle \]
\[\text{calculated-result-type } \text{erfc}_\text{inv}(T z, \text{const Policy}); \]

Returns the inverse of the complement of the error function of \(z \), that is a value \(x \) such that:

\[p = \text{erfc}(x); \]

erfc_inv

\[
\begin{array}{c|c|c|c}
 z & 0 & 0.5 & 1 \\
 \hline
 \text{erfc}_\text{inv}(z) & 3 & 2 & 1 \\
\end{array}
\]

Math Toolkit

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/
Accuracy

For types up to and including 80-bit long doubles the approximations used are accurate to less than ~ 2 epsilon. For higher precision types these functions have the same accuracy as the forward error functions.

Testing

There are two sets of tests:

- Basic sanity checks attempt to "round-trip" from \(x \) to \(p \) and back again. These tests have quite generous tolerances: in general both the error functions and their inverses change so rapidly in some places that round tripping to more than a couple of significant digits isn't possible. This is especially true when \(p \) is very near one: in this case there isn't enough "information content" in the input to the inverse function to get back where you started.

- Accuracy checks using high-precision test values. These measure the accuracy of the result, given exact input values.

Implementation

These functions use a rational approximation devised by JM to calculate an initial approximation to the result that is accurate to ~10\(^{-19}\), then only if that has insufficient accuracy compared to the epsilon for \(T \), do we clean up the result using Halley iteration.

Constructing rational approximations to the \(\text{erf/erfc} \) functions is actually surprisingly hard, especially at high precision. For this reason no attempt has been made to achieve 10\(^{-34}\) accuracy suitable for use with 128-bit reals.

In the following discussion, \(p \) is the value passed to \(\text{erf}_\text{inv} \), and \(q \) is the value passed to \(\text{erfc}_\text{inv} \), so that \(p = 1 - q \) and \(q = 1 - p \) and in both cases we want to solve for the same result \(x \).

For \(p < 0.5 \) the inverse \(\text{erf} \) function is reasonably smooth and the approximation:

\[
x = p(p + 10)(Y + R(p))
\]

Gives a good result for a constant \(Y \), and \(R(p) \) optimised for low absolute error compared to \(|Y|\).

For \(q < 0.5 \) things get trickier, over the interval \(0.5 > q > 0.25 \) the following approximation works well:

\[
x = \frac{\sqrt{-2\log(q)}}{Y + R(q)}
\]

While for \(q < 0.25 \), let

\[
z = \sqrt{-\log(q)}
\]

Then the result is given by:

\[
x = z(Y + R(z - B))
\]

As before \(Y \) is a constant and the rational function \(R \) is optimised for low absolute error compared to \(|Y|\). \(B \) is also a constant: it is the smallest value of \(z \) for which each approximation is valid. There are several approximations of this form each of which reaches a little further into the tail of the \(\text{erfc} \) function (at long double precision the extended exponent range compared to double means that the tail goes on for a very long way indeed).
Polynomials

Legendre (and Associated) Polynomials

Synopsis

```cpp
#include <boost/math/special_functions/legendre.hpp>

namespace boost { namespace math {

    template <class T>
    calculated-result-type legendre_p(int n, T x);

    template <class T, class Policy>
    calculated-result-type legendre_p(int n, T x, const Policy&);

    template <class T>
    calculated-result-type legendre_p(int n, int m, T x);

    template <class T, class Policy>
    calculated-result-type legendre_p(int n, int m, T x, const Policy&);

    template <class T>
    calculated-result-type legendre_q(unsigned n, T x);

    template <class T, class Policy>
    calculated-result-type legendre_q(unsigned n, T x, const Policy&);

    template <class T1, class T2, class T3>
    calculated-result-type legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1);

    template <class T1, class T2, class T3>
    calculated-result-type legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1);

}} // namespaces
```

The return type of these functions is computed using the result type calculation rules: note than when there is a single template argument the result is the same type as that argument or double if the template argument is an integer type.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Description

```cpp
template <class T>
calculated-result-type legendre_p(int l, T x);

template <class T, class Policy>
calculated-result-type legendre_p(int l, T x, const Policy&);
```

Returns the Legendre Polynomial of the first kind:

\[
\text{legendre}_p(l, x) = P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l ; \quad |x| \leq 1
\]

Requires \(-1 \leq x \leq 1\), otherwise returns the result of domain_error.
Negative orders are handled via the reflection formula:

\[P_{-l-1}(x) = P_l(x) \]

The following graph illustrates the behaviour of the first few Legendre Polynomials:

![Legendre Polynomials](image)

```
template <class T>
calculated-result-type legendre_p(int l, int m, T x);

template <class T, class Policy>
calculated-result-type legendre_p(int l, int m, T x, const Policy&);
```

Returns the associated Legendre polynomial of the first kind:

\[
\text{legendre}_p(l, m, x) = P^m_l(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} P_l(x)
\]

Requires \(-1 \leq x \leq 1\), otherwise returns the result of \text{domain_error}.

Negative values of \(l\) and \(m\) are handled via the identity relations:

\[
\begin{align*}
P^{-m}_l(x) &= (-1)^{m(l-m)} \frac{m(l-m)!}{(l+m)!} P^m_l(x) \\
P^m_{l-1}(x) &= P^m_l(x)
\end{align*}
\]
Caution

The definition of the associated Legendre polynomial used here includes a leading Condon-Shortley phase term of \((-1)^m\). This matches the definition given by Abramowitz and Stegun (8.6.6) and that used by Mathworld and Mathematica’s LegendreP function. However, uses in the literature do not always include this phase term, and strangely the specification for the associated Legendre function in the C++ TR1 (assoc_legendre) also omits it, in spite of stating that it uses Abramowitz and Stegun as the final arbiter on these matters.

See:

\[
\begin{align*}
\text{template <class T> } & \quad \text{calculated-result-type } \text{legendre_q(unsigned n, T x);} \\
\text{template <class T, class Policy> } & \quad \text{calculated-result-type } \text{legendre_q(unsigned n, T x, const Policy&);} \\
\end{align*}
\]

Returns the value of the Legendre polynomial that is the second solution to the Legendre differential equation, for example:

\[
\begin{align*}
\text{legendre_q(0, x)} &= Q_0(x) &= \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) \\
\text{legendre_q(1, x)} &= Q_1(x) &= \frac{x}{2}\ln\left(\frac{1+x}{1-x}\right) - 1 \\
\end{align*}
\]

Requires \(-1 \leq x \leq 1\), otherwise domain_error is called.

The following graph illustrates the first few Legendre functions of the second kind:

![Legendre Polynomials of the Second Kind](image)
template <class T1, class T2, class T3>
calculated-result-type legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1);

Implements the three term recurrence relation for the Legendre polynomials, this function can be used to create a sequence of values evaluated at the same x, and for rising l. This recurrence relation holds for Legendre Polynomials of both the first and second kinds.

\[
P_{l+1}(x) = \frac{(2l+1)xP_{l}(x) - lP_{l-1}(x)}{(l+1)}
\]

For example we could produce a vector of the first 10 polynomial values using:

```cpp
double x = 0.5; // Abscissa value
vector<double> v;
v.push_back(legendre_p(0, x)).push_back(legendre_p(1, x));
for(unsigned l = 1; l < 10; ++l)
    v.push_back(legendre_next(l, x, v[l], v[l-1]));
```

Formally the arguments are:

- l The degree of the last polynomial calculated.
- x The abscissa value
- Pl The value of the polynomial evaluated at degree l.
- Plm1 The value of the polynomial evaluated at degree l-1.

```
template <class T1, class T2, class T3>
calculated-result-type legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1);
```

Implements the three term recurrence relation for the Associated Legendre polynomials, this function can be used to create a sequence of values evaluated at the same x, and for rising l.

\[
P_{l+1}^m(x) = \frac{(2l+1)xP_{l}^m(x) - (l + m + 1)P_{l-1}^m(x)}{l - m + 1}
\]

For example we could produce a vector of the first m+10 polynomial values using:

```cpp
double x = 0.5; // Abscissa value
int m = 10; // order
vector<double> v;
v.push_back(legendre_p(m,m,x)).push_back(legendre_p(1+m,m,x));
for(unsigned l = 1 + m; l < m + 10; ++l)
    v.push_back(legendre_next(l, m, x, v[l], v[l-1]));
```

Formally the arguments are:

- l The degree of the last polynomial calculated.
- m The order of the Associated Polynomial.
- x The abscissa value
- Pl The value of the polynomial evaluated at degree l.
- Plm1 The value of the polynomial evaluated at degree l-1.
Accuracy

The following table shows peak errors (in units of epsilon) for various domains of input arguments. Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error.

Table 29. Peak Errors In the Legendre P Function

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>Errors in range</th>
<th>Errors in range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 < l < 20</td>
<td>20 < l < 120</td>
</tr>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=211 Mean=20</td>
<td>Peak=300 Mean=33</td>
</tr>
<tr>
<td>64</td>
<td>SUSE Linux IA32, g++ 4.1</td>
<td>Peak=70 Mean=10</td>
<td>Peak=700 Mean=60</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64, g++ 3.4.4</td>
<td>Peak=70 Mean=10</td>
<td>Peak=700 Mean=60</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=35 Mean=6</td>
<td>Peak=292 Mean=41</td>
</tr>
</tbody>
</table>

Table 30. Peak Errors In the Associated Legendre P Function

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>Errors in range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 < l < 20</td>
</tr>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=1200 Mean=7</td>
</tr>
<tr>
<td>64</td>
<td>SUSE Linux IA32, g++ 4.1</td>
<td>Peak=80 Mean=5</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64, g++ 3.4.4</td>
<td>Peak=80 Mean=5</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=42 Mean=4</td>
</tr>
</tbody>
</table>

Table 31. Peak Errors In the Legendre Q Function

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>Errors in range</th>
<th>Errors in range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 < l < 20</td>
<td>20 < l < 120</td>
</tr>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=50 Mean=7</td>
<td>Peak=4600 Mean=370</td>
</tr>
<tr>
<td>64</td>
<td>SUSE Linux IA32, g++ 4.1</td>
<td>Peak=51 Mean=8</td>
<td>Peak=6000 Mean=480</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64, g++ 3.4.4</td>
<td>Peak=51 Mean=8</td>
<td>Peak=6000 Mean=480</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=90 Mean=10</td>
<td>Peak=1700 Mean=140</td>
</tr>
</tbody>
</table>

Note that the worst errors occur when the order increases, values greater than ~120 are very unlikely to produce sensible results, especially in the associated polynomial case when the degree is also large. Further the relative errors are likely to grow arbitrarily large when the function is very close to a root.

No comparisons to other libraries are shown here: there appears to be only one viable implementation method for these functions, the comparisons to other libraries that have been run show identical error rates to those given here.
Testing

A mixture of spot tests of values calculated using functions.wolfram.com, and randomly generated test data are used: the test data was computed using NTL::RR at 1000-bit precision.

Implementation

These functions are implemented using the stable three term recurrence relations. These relations guarantee low absolute error but cannot guarantee low relative error near one of the roots of the polynomials.

Laguerre (and Associated) Polynomials

Synopsis

```cpp
#include <boost/math/special_functions/laguerre.hpp>

namespace boost{ namespace math{

    template <class T>
    calculated-result-type laguerre(unsigned n, T x);

    template <class T, class Policy>
    calculated-result-type laguerre(unsigned n, T x, const Policy&);

    template <class T>
    calculated-result-type laguerre(unsigned n, unsigned m, T x);

    template <class T, class Policy>
    calculated-result-type laguerre(unsigned n, unsigned m, T x, const Policy&);

    template <class T1, class T2, class T3>
    calculated-result-type laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1);

    template <class T1, class T2, class T3>
    calculated-result-type laguerre_next(unsigned n, unsigned m, T1 x, T2 Ln, T3 Lnm1);

}} // namespaces
```

Description

The return type of these functions is computed using the result type calculation rules: note than when there is a single template argument the result is the same type as that argument or double if the template argument is an integer type.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

```cpp
template <class T>
calculated-result-type laguerre(unsigned n, T x);

template <class T, class Policy>
calculated-result-type laguerre(unsigned n, T x, const Policy&);
```

Returns the value of the Laguerre Polynomial of order n at point x:

\[L_n(x) \equiv \frac{e^x}{n!} \frac{d^n}{dx^n}(x^n e^{-x}) \]
The following graph illustrates the behaviour of the first few Laguerre Polynomials:

![Graph of Laguerre Polynomials](image)

The graph shows the behavior of the first few Laguerre Polynomials, denoted as $L_n(x)$, for different values of n: $n=0$, $n=1$, $n=2$, $n=3$, $n=4$, and $n=5$. The x-axis represents the variable x, and the y-axis represents the value of the Laguerre Polynomial at that point.

Mathematical Formulas

Associated Laguerre Polynomial

The Associated Laguerre polynomial of degree n and order m at point x is given by:

$$L_n^m(x) = (-1)^m \frac{d^m}{dx^m}L_{n+m}(x)$$

Three Term Recurrence Relation

Implementing the three term recurrence relation for the Laguerre polynomials, this function can be used to create a sequence of values evaluated at the same x, and for rising n.

$$L_{n+1}(x) = \frac{(2n+1-x)L_n(x) - nL_{n-1}(x)}{(n+1)}$$

For example, we could produce a vector of the first 10 polynomial values using:

```cpp
double x = 0.5; // Abscissa value
vector<double> v;
v.push_back(laguerre(0, x)); push_back(laguerre(1, x));
for(unsigned l = 1; l < 10; ++l)
    v.push_back(laguerre_next(l, x, v[l], v[l-1]));
```

Formally, the arguments are:

- n: The degree n of the last polynomial calculated.
- x: The abscissa value
\[L_{n+1}^m(x) = \frac{m + 2n + 1 - x}{n + 1} L_n^m(x) - \frac{m + n}{n + 1} L_{n-1}^m(x) \]

For example we could produce a vector of the first 10 polynomial values using:

```cpp
double x = 0.5;  // Abscissa value
int m = 10;     // order
vector<double> v;
v.push_back(laguerre(0, m, x)).push_back(laguerre(1, m, x));
for(unsigned l = 1; l < 10; ++l)
    v.push_back(laguerre_next(l, m, x, v[l], v[l-1]));
```

Formally the arguments are:

- \(n \) The degree of the last polynomial calculated.
- \(m \) The order of the Associated Polynomial.
- \(x \) The abscissa value.
- \(L_n \) The value of the polynomial evaluated at degree \(n \).
- \(L_{n-1} \) The value of the polynomial evaluated at degree \(n-1 \).

Accuracy

The following table shows peak errors (in units of epsilon) for various domains of input arguments. Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error.

Table 32. Peak Errors In the Laguerre Polynomial

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>Errors in range (0 < l < 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=3000 Mean=185</td>
</tr>
<tr>
<td>64</td>
<td>SUSE Linux IA32, g++ 4.1</td>
<td>Peak=1x10^4 Mean=828</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64, g++ 3.4.4</td>
<td>Peak=1x10^4 Mean=828</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=680 Mean=40</td>
</tr>
</tbody>
</table>
Table 33. Peak Errors In the Associated Laguerre Polynomial

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>Errors in range 0 < l < 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=433 Mean=11</td>
</tr>
<tr>
<td>64</td>
<td>SUSE Linux IA32, g++ 4.1</td>
<td>Peak=61.4 Mean=19.5</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64, g++ 3.4.4</td>
<td>Peak=61.4 Mean=19.5</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=540 Mean=13.94</td>
</tr>
</tbody>
</table>

Note that the worst errors occur when the degree increases, values greater than ~120 are very unlikely to produce sensible results, especially in the associated polynomial case when the order is also large. Further the relative errors are likely to grow arbitrarily large when the function is very close to a root.

Testing

A mixture of spot tests of values calculated using functions.wolfram.com, and randomly generated test data are used: the test data was computed using NTL::RR at 1000-bit precision.

Implementation

These functions are implemented using the stable three term recurrence relations. These relations guarantee low absolute error but cannot guarantee low relative error near one of the roots of the polynomials.

Hermite Polynomials

Synopsis

```cpp
#include <boost/math/special_functions/hermite.hpp>

namespace boost { namespace math {

    template <class T>
    calculated-result-type hermite(unsigned n, T x);

    template <class T, class Policy>
    calculated-result-type hermite(unsigned n, T x, const Policy&);

    template <class T1, class T2, class T3>
    calculated-result-type hermite_next(unsigned n, T1 x, T2 Hn, T3 Hn1);

}} // namespaces
```

Description

The return type of these functions is computed using the result type calculation rules: note than when there is a single template argument the result is the same type as that argument or double if the template argument is an integer type.
template <class T>
calculated-result-type hermite(unsigned n, T x);

template <class T, class Policy>
calculated-result-type hermite(unsigned n, T x, const Policy&);

Returns the value of the Hermite Polynomial of order \(n \) at point \(x \):

\[
\text{hermite}(x) = \frac{(-1)^n e^{2x} \frac{d^n}{dx^n} e^{-x^2}}{n!}
\]

The final \textbf{Policy} argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

The following graph illustrates the behaviour of the first few Hermite Polynomials:

![Hermite Polynomials graph](image)

template <class T1, class T2, class T3>
calculated-result-type hermite_next(unsigned n, T1 x, T2 Hn, T3 Hn1);

Implements the three term recurrence relation for the Hermite polynomials, this function can be used to create a sequence of values evaluated at the same \(x \), and for rising \(n \).

\[
H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)
\]

For example we could produce a vector of the first 10 polynomial values using:

```cpp
double x = 0.5; // Abscissa value
vector<double> v;
v.push_back(hermite(0, x)).push_back(hermite(1, x));
for(unsigned l = 1; l < 10; ++l)
    v.push_back(hermite_next(l, x, v[l], v[l-1]));
```

Formally the arguments are:

- \(n \) The degree \(n \) of the last polynomial calculated.
x The abscissa value

Hn The value of the polynomial evaluated at degree \(n \).

Hn-1 The value of the polynomial evaluated at degree \(n-1 \).

Accuracy

The following table shows peak errors (in units of epsilon) for various domains of input arguments. Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error.

Table 34. Peak Errors In the Hermite Polynomial

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>Errors in range</th>
<th>0 < l < 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=4.5 Mean=1.5</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA32, g++ 4.1</td>
<td>Peak=6 Mean=2</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64, g++ 3.4.4</td>
<td>Peak=6 Mean=2</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=6 Mean=4</td>
<td></td>
</tr>
</tbody>
</table>

Note that the worst errors occur when the degree increases, values greater than ~120 are very unlikely to produce sensible results, especially in the associated polynomial case when the order is also large. Further the relative errors are likely to grow arbitrarily large when the function is very close to a root.

Testing

A mixture of spot tests of values calculated using functions.wolfram.com, and randomly generated test data are used: the test data was computed using NTL::RR at 1000-bit precision.

Implementation

These functions are implemented using the stable three term recurrence relations. These relations guarantee low absolute error but cannot guarantee low relative error near one of the roots of the polynomials.
Spherical Harmonics

Synopsis

```cpp
#include <boost/math/special_functions/spheric_harmonic.hpp>
namespace boost::math{

template <class T1, class T2>
std::complex<calculated-result-type> spherical_harmonic(unsigned n, int m, T1 theta, T2 phi);

// Additional function templates...

}} // namespaces
```

Description

The return type of these functions is computed using the *result type calculation rules* when T1 and T2 are different types.

The final *Policy* argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the *policy documentation for more details.*

```cpp
template <class T1, class T2>
std::complex<calculated-result-type> spherical_harmonic(unsigned n, int m, T1 theta, T2 phi);

// Additional function templates...
```

Returns the value of the Spherical Harmonic $Y_n^m(\theta, \phi)$:

$$Y_n^m(\theta, \varphi) = \sqrt{\frac{2n + 1}{4\pi} \frac{(n - m)!}{(n + m)!}} P_n^m(\cos \theta) e^{im\varphi}$$

The spherical harmonics $Y_n^m(\theta, \phi)$ are the angular portion of the solution to Laplace's equation in spherical coordinates where azimuthal symmetry is not present.
Caution

Care must be taken in correctly identifying the arguments to this function: θ is taken as the polar (colatitudinal) coordinate with θ in $[0, \pi]$, and ϕ as the azimuthal (longitudinal) coordinate with ϕ in $[0, 2\pi]$. This is the convention used in Physics, and matches the definition used by Mathematica in the function SpericalHarmonicY, but is opposite to the usual mathematical conventions.

Some other sources include an additional Condon-Shortley phase term of $(-1)^m$ in the definition of this function: note however that our definition of the associated Legendre polynomial already includes this term.

This implementation returns zero for $m > n$

For θ outside $[0, \pi]$ and ϕ outside $[0, 2\pi]$ this implementation follows the convention used by Mathematica: the function is periodic with period π in θ and 2π in ϕ. Please note that this is not the behaviour one would get from a casual application of the function's definition. Cautious users should keep θ and ϕ to the range $[0, \pi]$ and $[0, 2\pi]$ respectively.


```
template <class T1, class T2>  
calculated-result-type spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi);  

template <class T1, class T2, class Policy>  
calculated-result-type spherical_harmonic_r(unsigned n, int m, T1 theta, T2 phi, const Policy&);  
```

Returns the real part of $Y_n^m(\theta, \phi)$:

$$\text{Re}(Y_n^m(\theta, \phi)) = \sqrt{\frac{2n + 1}{4\pi} \frac{(n-m)!}{(n+m)!}} P_n^m(\cos\theta)\cos(m\phi)$$

```
template <class T1, class T2>  
calculated-result-type spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi);  

template <class T1, class T2, class Policy>  
calculated-result-type spherical_harmonic_i(unsigned n, int m, T1 theta, T2 phi, const Policy&);  
```

Returns the imaginary part of $Y_n^m(\theta, \phi)$:

$$\text{Im}(Y_n^m(\theta, \phi)) = \sqrt{\frac{2n + 1}{4\pi} \frac{(n-m)!}{(n+m)!}} P_n^m(\cos\theta)\sin(m\phi)$$

Accuracy

The following table shows peak errors for various domains of input arguments. Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error. Peak errors are the same for both the real and imaginary parts, as the error is dominated by calculation of the associated Legendre polynomials: especially near the roots of the associated Legendre function.

All values are in units of epsilon.
Table 35. Peak Errors In the Spherical Harmonic Functions

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>Errors in range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 < l < 20</td>
</tr>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=2x10^4 Mean=700</td>
</tr>
<tr>
<td>64</td>
<td>SUSE Linux IA32, g++ 4.1</td>
<td>Peak=2900 Mean=100</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64, g++ 3.4.4</td>
<td>Peak=2900 Mean=100</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=6700 Mean=230</td>
</tr>
</tbody>
</table>

Note that the worst errors occur when the degree increases, values greater than ~120 are very unlikely to produce sensible results, especially when the order is also large. Further the relative errors are likely to grow arbitrarily large when the function is very close to a root.

Testing

A mixture of spot tests of values calculated using functions.wolfram.com, and randomly generated test data are used: the test data was computed using NTL::RR at 1000-bit precision.

Implementation

These functions are implemented fairly naively using the formulae given above. Some extra care is taken to prevent roundoff error when converting from polar coordinates (so for example the \(1 - x^2\) term used by the associated Legendre functions is calculated without roundoff error using \(x = \cos(\theta)\), and \(1 - x^2 = \sin^2(\theta)\)). The limiting factor in the error rates for these functions is the need to calculate values near the roots of the associated Legendre functions.

Bessel Functions

Bessel Function Overview

Ordinary Bessel Functions

Bessel Functions are solutions to Bessel's ordinary differential equation:

\[
z^2 \frac{d^2 u}{dz^2} + z \frac{du}{dz} + (z^2 - \nu^2)u = 0
\]

where \(\nu\) is the order of the equation, and may be an arbitrary real or complex number, although integer orders are the most common occurrence.

This library supports either integer or real orders.

Since this is a second order differential equation, there must be two linearly independent solutions, the first of these is denoted \(J_\nu\) and known as a Bessel function of the first kind:

\[
J_\nu(z) = \left(\frac{z}{2}\right)^\nu \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k}}{k! k! (\nu + k + 1)}
\]

This function is implemented in this library as cyl_bessel_j.

The second solution is denoted either \(Y_\nu\) or \(N_\nu\) and is known as either a Bessel Function of the second kind, or as a Neumann function:
$$Y_\nu(z) = \frac{J_\nu(z) \cos(\nu \pi) - J_{-\nu}(z)}{\sin(\nu \pi)}$$

This function is implemented in this library as `cyl_neumann`.

The Bessel functions satisfy the recurrence relations:

$$J_{\nu+1}(z) = \frac{2\nu}{z}J_\nu(z) - J_{\nu-1}(z)$$

$$Y_{\nu+1}(z) = \frac{2\nu}{z}Y_\nu(z) - Y_{\nu-1}(z)$$

Have the derivatives:

$$J'_\nu(z) = \frac{\nu}{z}J_\nu(z) - J_{\nu+1}(z)$$

$$Y'_\nu(z) = \frac{\nu}{z}Y_\nu(z) - Y_{\nu+1}(z)$$

Have the Wronskian relation:

$$W = J_\nu(z)Y'_\nu(z) - Y_\nu(z)J'_\nu(z) = Y_\nu(z)J_{\nu+1}(z) - J_\nu(z)Y_{\nu+1}(z) = \frac{2}{\pi z}$$

and the reflection formulae:

$$J_{-\nu}(z) = \cos(\nu \pi)J_\nu(z) - \sin(\nu \pi)Y_\nu(z)$$

$$Y_{-\nu}(z) = \sin(\nu \pi)J_\nu(z) + \cos(\nu \pi)Y_\nu(z)$$

Modified Bessel Functions

The Bessel functions are valid for complex argument x, and an important special case is the situation where x is purely imaginary: giving a real valued result. In this case the functions are the two linearly independent solutions to the modified Bessel equation:

$$z^2 \frac{d^2 u}{dz^2} + z \frac{du}{dz} - (z^2 + \nu^2)u = 0$$

The solutions are known as the modified Bessel functions of the first and second kind (or occasionally as the hyperbolic Bessel functions of the first and second kind). They are denoted I_ν and K_ν respectively:

$$I_\nu(z) = \left(\frac{1}{2}z\right)^\nu \sum_{k=0}^{\infty} \frac{\left(\frac{1}{4}z^2\right)^k}{k! \Gamma(\nu + k + 1)}$$

$$K_\nu(z) = \frac{\pi}{2} \cdot \frac{I_{-\nu}(z) - I_\nu(z)}{\sin(\nu \pi)}$$

These functions are implemented in this library as `cyl_bessel_i` and `cyl_bessel_k` respectively.

The modified Bessel functions satisfy the recurrence relations:

$$I_{\nu+1}(z) = -\frac{2\nu}{z}I_\nu(z) + I_{\nu-1}(z)$$

$$K_{\nu+1}(z) = \frac{2\nu}{z}K_\nu(z) + K_{\nu-1}(z)$$
Have the derivatives:

\[
I'_v(z) = \frac{v}{2}I_v(z) + I_{v+1}(z)
\]

\[
K'_v(z) = \frac{v}{2}K_v(z) - K_{v+1}(z)
\]

Have the Wronskian relation:

\[
W = I_v(z)K'_v(z) - K_v(z)I'_v(z) = -\left[I_v(z)K_{v+1}(z) + K_v(z)I_{v+1}(z) \right] = -\frac{1}{z}
\]

and the reflection formulae:

\[
I_{-v}(z) = I_v(z) + \frac{2}{\pi} \sin (v\pi)K_v(z)
\]

\[
K_{-v}(z) = K_v(z)
\]

Spherical Bessel Functions

When solving the Helmholtz equation in spherical coordinates by separation of variables, the radial equation has the form:

\[
z^2 \frac{d^2 u}{dz^2} + 2z \frac{du}{dz} + [z^2 - n(n + 1)]u = 0
\]

The two linearly independent solutions to this equation are called the spherical Bessel functions \(j_n\) and \(y_n\), and are related to the ordinary Bessel functions \(J_n\) and \(Y_n\) by:

\[
j_n(z) = \sqrt{\frac{z}{2\pi}} J_{n+\frac{1}{2}}(z)
\]

\[
y_n(z) = \sqrt{\frac{z}{2\pi}} Y_{n+\frac{1}{2}}(z)
\]

The spherical Bessel function of the second kind \(y_n\) is also known as the spherical Neumann function \(n_n\).

These functions are implemented in this library as `sph_bessel` and `sph_neumann`.

Bessel Functions of the First and Second Kinds

Synopsis

```cpp
template <class T1, class T2>
calculated-result-type cyl_bessel_j(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_bessel_j(T1 v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type cyl_neumann(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_neumann(T1 v, T2 x, const Policy&);
```

Description

The functions `cyl_bessel_j` and `cyl_neumann` return the result of the Bessel functions of the first and second kinds respectively:
cyl_bessel_j(v, x) = J_v(x)
cyl_neumann(v, x) = Y_v(x) = N_v(x)

where:

\[J_v(z) = \left(\frac{1}{2} z \right)^v \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k}}{k! (v + k + 1)} \]

\[Y_v(z) = \frac{J_v(z) \cos (v\pi) - J_{-v}(z)}{\sin (v\pi)} \]

The return type of these functions is computed using the *result type calculation rules* when T1 and T2 are different types. The functions are also optimised for the relatively common case that T1 is an integer.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

The functions return the result of domain_error whenever the result is undefined or complex. For cyl_bessel_j this occurs when \(x < 0 \) and \(v \) is not an integer, or when \(x = 0 \) and \(v \neq 0 \). For cyl_neumann this occurs when \(x <= 0 \).

The following graph illustrates the cyclic nature of \(J_v \):

The following graph shows the behaviour of \(Y_v \): this is also cyclic for large \(x \), but tends to \(-\infty\) for small \(x \):
Testing

There are two sets of test values: spot values calculated using functions.wolfram.com, and a much larger set of tests computed using a simplified version of this implementation (with all the special case handling removed).

Accuracy

The following tables show how the accuracy of these functions varies on various platforms, along with comparisons to the GSL-1.9 and Cephes libraries. Note that the cyclic nature of these functions means that they have an infinite number of irrational roots: in general these functions have arbitrarily large relative errors when the arguments are sufficiently close to a root. Of course the absolute error in such cases is always small. Note that only results for the widest floating-point type on the system are given as narrower types have effectively zero error. All values are relative errors in units of epsilon.

Table 36. Errors Rates in cyl_bessel_j

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>J_0 and J_1</th>
<th>J_v</th>
<th>J_v (large values of $x > 1000$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32 / Visual C++ 8.0</td>
<td>Peak=2.5 Mean=1.1</td>
<td>Peak=11 Mean=2.2</td>
<td>Peak=413 Mean=110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GSL Peak=6.6</td>
<td>GSL Peak=11</td>
<td>GSL Peak=6x10^{11}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cephes Peak=2.5</td>
<td>Cephes Mean=2.5</td>
<td>Cephes Peak=2x10^5</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64 / G++ 3.4</td>
<td>Peak=7 Mean=3</td>
<td>Peak=117 Mean=10</td>
<td>Peak=2x10^4 Mean=6x10^3</td>
</tr>
<tr>
<td>64</td>
<td>SUSE Linux AMD64 / G++ 4.1</td>
<td>Peak=7 Mean=3</td>
<td>Peak=400 Mean=40</td>
<td>Peak=2x10^4 Mean=1x10^4</td>
</tr>
<tr>
<td>113</td>
<td>HP-UX / HP aCC 6</td>
<td>Peak=14 Mean=6</td>
<td>Peak=29 Mean=3</td>
<td>Peak=2700 Mean=450</td>
</tr>
</tbody>
</table>
Table 37. Errors Rates in cyl_neumann

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>J_0 and J_1</th>
<th>J_n (integer orders)</th>
<th>J_v (fractional orders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32 / Visual C++ 8.0</td>
<td>Peak=330 Mean=54</td>
<td>Peak=923 Mean=83</td>
<td>Peak=561 Mean=36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GSL Peak=34 Mean=9</td>
<td>GSL Peak=500 Mean=54</td>
<td>GSL Peak=1.4x10^6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cephes Peak=330 Mean=54</td>
<td>Cephes Peak=923 Mean=83</td>
<td>Cephes Peak=+INF</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64 / G++ 3.4</td>
<td>Peak=470 Mean=56</td>
<td>Peak=843 Mean=51</td>
<td>Peak=741 Mean=51</td>
</tr>
<tr>
<td>64</td>
<td>SUSE Linux AMD64 / G++ 4.1</td>
<td>Peak=1300 Mean=424</td>
<td>Peak=2x10^4 Mean=8x10^3</td>
<td>Peak=1x10^5 Mean=6x10^3</td>
</tr>
<tr>
<td>113</td>
<td>HP-UX / HP aCC 6</td>
<td>Peak=180 Mean=63</td>
<td>Peak=340 Mean=150</td>
<td>Peak=2x10^4 Mean=1200</td>
</tr>
</tbody>
</table>

Note that for large x these functions are largely dependent on the accuracy of the `std::sin` and `std::cos` functions.

Comparison to GSL and Cephes is interesting: both Cephes and this library optimise the integer order case - leading to identical results - simply using the general case is for the most part slightly more accurate though, as noted by the better accuracy of GSL in the integer argument cases. This implementation tends to perform much better when the arguments become large, Cephes in particular produces some remarkably inaccurate results with some of the test data (no significant figures correct), and even GSL performs badly with some inputs to J_v. Note that by way of double-checking these results, the worst performing Cephes and GSL cases were recomputed using functions.wolfram.com, and the result checked against our test data: no errors in the test data were found.

Implementation

The implementation is mostly about filtering off various special cases:

When x is negative, then the order v must be an integer or the result is a domain error. If the order is an integer then the function is odd for odd orders and even for even orders, so we reflect to $x > 0$.

When the order v is negative then the reflection formulae can be used to move to $v > 0$:

\[
J_{-v}(z) = \cos (v\pi) J_v(z) - \sin (v\pi) Y_v(z)
\]

\[
Y_{-v}(z) = \sin (v\pi) J_v(z) + \cos (v\pi) Y_v(z)
\]

Note that if the order is an integer, then these formulae reduce to:

\[J_n = (-1)^n J_n \]

\[Y_n = (-1)^n Y_n \]

However, in general, a negative order implies that we will need to compute both J and Y.

When x is large compared to the order v then the asymptotic expansions for large x in M. Abramowitz and I.A. Stegun, *Handbook of Mathematical Functions* 9.2.19 are used (these were found to be more reliable than those in A&S 9.2.5).

When the order v is an integer the method first relates the result to J_0, J_1, Y_0 and Y_1 using either forwards or backwards recurrence (Miller’s algorithm) depending upon which is stable. The values for J_0, J_1, Y_0 and Y_1 are calculated using the rational minimax approximations on root-bracketing intervals for small $|x|$ and Hankel asymptotic expansion for large $|x|$. The coefficients are from:

These approximations are accurate to around 19 decimal digits: therefore these methods are not used when type T has more than 64 binary digits.

When \(x \) is small, \(J_x \) is best computed directly from the series:

\[
J_{\nu}(z) = \left(\frac{1}{2} z \right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^k (\frac{1}{2} z)^k}{k! (\nu + k + 1)}
\]

In the general case we compute \(J_{\mu} \) and \(Y_{\mu} \) simultaneously.

To get the initial values, let \(\mu = \nu - \text{floor}(\nu + 1/2) \), then \(\mu \) is the fractional part of \(\nu \) such that \(|\mu| \leq 1/2 \) (we need this for convergence later). The idea is to calculate \(J_{\mu}(x) \), \(J_{\mu+1}(x) \), \(Y_{\mu}(x) \), \(Y_{\mu+1}(x) \) and use them to obtain \(J_{\nu}(x) \), \(Y_{\nu}(x) \).

The algorithm is called Steed's method, which needs two continued fractions as well as the Wronskian:

\[
W = J_{\nu}(z)Y_{\nu}'(z) - Y_{\nu}(z)J_{\nu}'(z) = \frac{2}{\pi z}
\]

\[
\text{CF1 : } f_{\nu} = J_{\nu+1} - J_{\nu} = \frac{1}{2} (\nu + 1) x - \frac{1}{2} (\nu + 2) x - \cdots
\]

\[
\text{CF2 : } p + iq = J_{\nu}' + iy_{\nu}' = (i - \frac{1}{2x}) + \frac{i}{2} \left[(\frac{1}{2})^2 - \frac{1}{2x}^2 (\frac{3}{2})^2 - \frac{1}{2x}^2 \right] + \cdots
\]

The continued fractions are computed using the modified Lentz's method (W.J. Lentz, Generating Bessel functions in Mie scattering calculations using continued fractions, Applied Optics, vol 15, 668 (1976)). Their convergence rates depend on \(x \), therefore we need different strategies for large \(x \) and small \(x \).

\(x > \nu \), CF1 needs \(O(x) \) iterations to converge, CF2 converges rapidly

\(x \leq \nu \), CF1 converges rapidly, CF2 fails to converge when \(x \to 0 \)

When \(x \) is large (\(x > 2 \)), both continued fractions converge (CF1 may be slow for really large \(x \)). \(J_{\mu}, J_{\mu+1}, Y_{\mu}, Y_{\mu+1} \) can be calculated by

\[
J_{\mu} = \pm \left(\frac{W}{q + y(p - f_{\mu})} \right)^{1/2}
\]

\[
J_{\mu+1} = J_{\mu} \left(\frac{\mu}{x} - f_{\mu} \right)
\]

\[
Y_{\mu} = yJ_{\mu}
\]

\[
Y_{\mu+1} = yJ_{\mu} \left(\frac{\mu}{x} - p - \frac{q}{y} \right)
\]

where

\[
y = \frac{p - f_{\mu}}{q}
\]

\(J_{\nu} \) and \(Y_{\mu} \) are then calculated using backward (Miller's algorithm) and forward recurrence respectively.
When \(x \) is small (\(x \leq 2 \)), CF2 convergence may fail (but CF1 works very well). The solution here is Temme’s series:

\[
Y_\mu = - \sum_{k=0}^{\infty} c_k g_k
\]

\[
Y_{\mu+1} = - \frac{x}{2} \sum_{k=0}^{\infty} c_k h_k
\]

where

\[
c_k = \frac{1}{k!} \left(\frac{x^2}{4} \right)^k
\]

\(g_k \) and \(h_k \) are also computed by recursions (involving gamma functions), but the formulas are a little complicated. Readers are referred to N.M. Temme, *On the numerical evaluation of the ordinary Bessel function of the second kind*, Journal of Computational Physics, vol 21, 343 (1976). Note Temme’s series converge only for \(|\mu| \leq 1/2 \).

As the previous case, \(Y_\nu \) is calculated from the forward recurrence, so is \(Y_{\nu+1} \). With these two values and \(f_\nu \), the Wronskian yields \(J_\nu(x) \) directly without backward recurrence.

Modified Bessel Functions of the First and Second Kinds

Synopsis

```cpp
template <class T1, class T2>
calculated-result-type cyl_bessel_i(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_bessel_i(T1 v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type cyl_bessel_k(T1 v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type cyl_bessel_k(T1 v, T2 x, const Policy&);
```

Description

The functions \(\text{cyl_bessel_i} \) and \(\text{cyl_bessel_k} \) return the result of the modified Bessel functions of the first and second kind respectively:

\(\text{cyl_bessel_i}(v, x) = I_v(x) \)

\(\text{cyl_bessel_k}(v, x) = K_v(x) \)

where:

\[
I_v(z) = \left(\frac{1}{2} \right)^z \sum_{k=0}^{\infty} \frac{(\frac{1}{4} z^2)^k}{k! I(v + k + 1)}
\]

\[
K_v(z) = \frac{\pi}{2} \cdot \frac{I_{-v}(z) - I_v(z)}{\sin(v\pi)}
\]

The return type of these functions is computed using the *result type calculation rules* when T1 and T2 are different types. The functions are also optimised for the relatively common case that T1 is an integer.
The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

The functions return the result of domain_error whenever the result is undefined or complex. For cyl_bessel_j this occurs when \(x < 0 \) and \(v \) is not an integer, or when \(x = 0 \) and \(v \neq 0 \). For cyl_neumann this occurs when \(x \leq 0 \).

The following graph illustrates the exponential behaviour of \(I_v \).

The following graph illustrates the exponential decay of \(K_v \).

Testing

There are two sets of test values: spot values calculated using functions.wolfram.com, and a much larger set of tests computed using a simplified version of this implementation (with all the special case handling removed).
Accuracy

The following tables show how the accuracy of these functions varies on various platforms, along with a comparison to the GSL-1.9 library. Note that only results for the widest floating-point type on the system are given, as narrower types have effectively zero error. All values are relative errors in units of epsilon.

Table 38. Errors Rates in cyl_bessel_i

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>I_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32 / Visual C++ 8.0</td>
<td>Peak=10 Mean=3.4 GSL Peak=6000</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64 / G++ 3.4</td>
<td>Peak=11 Mean=3</td>
</tr>
<tr>
<td>64</td>
<td>SUSE Linux AMD64 / G++ 4.1</td>
<td>Peak=11 Mean=4</td>
</tr>
<tr>
<td>113</td>
<td>HP-UX / HP aCC 6</td>
<td>Peak=15 Mean=4</td>
</tr>
</tbody>
</table>

Table 39. Errors Rates in cyl_bessel_k

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32 / Visual C++ 8.0</td>
<td>Peak=9 Mean=2 GSL Peak=9</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux IA64 / G++ 3.4</td>
<td>Peak=10 Mean=2</td>
</tr>
<tr>
<td>64</td>
<td>SUSE Linux AMD64 / G++ 4.1</td>
<td>Peak=10 Mean=2</td>
</tr>
<tr>
<td>113</td>
<td>HP-UX / HP aCC 6</td>
<td>Peak=12 Mean=5</td>
</tr>
</tbody>
</table>

Implementation

The following are handled as special cases first:

When computing I_ν for $x < 0$, then ν must be an integer or a domain error occurs. If ν is an integer, then the function is odd if ν is odd and even if ν is even, and we can reflect to $x > 0$.

For I_ν with ν equal to 0, 1 or 0.5 are handled as special cases.

The 0 and 1 cases use minimax rational approximations on finite and infinite intervals. The coefficients are from:

While the 0.5 case is a simple trigonometric function:

$I_{0.5}(x) = \sqrt{2 / \pi x} \cdot \sinh(x)$

For K_ν with ν an integer, the result is calculated using the recurrence relation:

$K_{\nu+1}(z) = \frac{2\nu}{z}K_\nu(z) + K_{\nu-1}(z)$
starting from \(K_0 \) and \(K_1 \) which are calculated using rational the approximations above. These rational approximations are accurate to around 19 digits, and are therefore only used when \(T \) has no more than 64 binary digits of precision.

In the general case, we first normalize \(\nu \) to \([0, \infty)\) with the help of the reflection formulae:

\[
I_{-\nu}(z) = I_\nu(z) + \frac{2}{\pi} \sin(\nu \pi) K_\nu(z)
\]

\[
K_{-\nu}(z) = K_\nu(z)
\]

Let \(\mu = \nu - \text{floor}(\nu + 1/2) \), then \(\mu \) is the fractional part of \(\nu \) such that \(|\mu| \leq 1/2 \) (we need this for convergence later). The idea is to calculate \(K_\mu(x) \) and \(K_{\mu+1}(x) \), and use them to obtain \(I_\nu(x) \) and \(K_\nu(x) \).

The algorithm is proposed by Temme in N.M. Temme, *On the numerical evaluation of the modified bessel function of the third kind*, Journal of Computational Physics, vol 19, 324 (1975), which needs two continued fractions as well as the Wronskian:

CF1:

\[
\frac{I_{\nu+1}}{I_\nu} = \frac{1}{2(\nu+1)} + \frac{1}{2(\nu+2)} + \cdots
\]

CF2:

\[
\frac{z_1}{z_0} = \frac{1}{2(x + 1)} + \frac{\nu^2 - \left(\frac{3}{2}\right)^2}{2(x + 2)} + \frac{\nu^2 - \left(\frac{5}{2}\right)^2}{2(x + 3)} + \cdots
\]

\[
W = I_\nu(z)K'_\nu(z) - K_\nu(z)I'_\nu(z) = -\left[I_\nu(z)K_{\nu+1}(z) + K_\nu(z)I_{\nu+1}(z) \right] = -\frac{1}{z}
\]

The continued fractions are computed using the modified Lentz's method (W.J. Lentz, *Generating Bessel functions in Mie scattering calculations using continued fractions*, Applied Optics, vol 15, 668 (1976)). Their convergence rates depend on \(x \), therefore we need different strategies for large \(x \) and small \(x \).

\(x > \nu \), CF1 needs \(O(x) \) iterations to converge, CF2 converges rapidly.

\(x \leq \nu \), CF1 converges rapidly, CF2 fails to converge when \(x \to 0 \).

When \(x \) is large (\(x > 2 \)), both continued fractions converge (CF1 may be slow for really large \(x \)). \(K_\mu \) and \(K_{\mu+1} \) can be calculated by

\[
K_\mu = \sqrt{\pi} (2x)^{\nu} e^{-x} z_0
\]

\[
K_{\mu+1} = \frac{K_\mu}{x} \left[\frac{1}{2} + \mu + x + \left(\mu^2 - \frac{1}{4} \right) z_1 z_0 \right]
\]

where

\[
z_0 = \frac{1}{1 + S \left(\frac{1}{2x} \right)^{\mu+1/2}}
\]

\(S \) is also a series that is summed along with CF2, see I.J. Thompson and A.R. Barnett, *Modified Bessel functions \(I_\nu \) and \(K_\nu \) of real order and complex argument to selected accuracy*, Computer Physics Communications, vol 47, 245 (1987).

When \(x \) is small (\(x \leq 2 \)), CF2 convergence may fail (but CF1 works very well). The solution here is Temme's series:

\[
K_\mu = \sum_{k=0}^{\infty} c_k f_k
\]

\[
K_{\mu+1} = \frac{2}{\pi} \sum_{k=0}^{\infty} c_k h_k
\]
\[c_k = \frac{1}{k!} \left(\frac{x}{4} \right)^k \]

\(f_k \) and \(h_k \) are also computed by recursions (involving gamma functions), but the formulas are a little complicated, readers are referred to N.M. Temme, *On the numerical evaluation of the modified Bessel function of the third kind*, Journal of Computational Physics, vol 19, 324 (1975). Note: Temme's series converge only for \(|\mu| \leq 1/2\).

\(K_\nu(x) \) is then calculated from the forward recurrence, as is \(K_{\nu+1}(x) \). With these two values and \(f_\nu \), the Wronskian yields \(I_\nu(x) \) directly.

Spherical Bessel Functions of the First and Second Kinds

Synopsis

```cpp
template <class T1, class T2>
calculated-result-type sph_bessel(unsigned v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type sph_bessel(unsigned v, T2 x, const Policy&);

template <class T1, class T2>
calculated-result-type sph_neumann(unsigned v, T2 x);

template <class T1, class T2, class Policy>
calculated-result-type sph_neumann(unsigned v, T2 x, const Policy&);
```

Description

The functions `sph_bessel` and `sph_neumann` return the result of the Spherical Bessel functions of the first and second kinds respectively:

\[j_\nu(x) = \begin{cases} \sqrt{\frac{\pi}{2x}} J_{\nu + \frac{1}{2}}(x) & \text{for } x > 0, \\ \sqrt{\frac{\pi}{2x}} Y_{\nu + \frac{1}{2}}(x) & \text{for } x > 0. \end{cases} \]

\[y_\nu(x) = \begin{cases} \sqrt{\frac{x}{\pi}} J_{\nu + \frac{1}{2}}(x) & \text{for } x > 0, \\ \sqrt{x} Y_{\nu + \frac{1}{2}}(x) & \text{for } x > 0. \end{cases} \]

The return type of these functions is computed using the *result type calculation rules* for the single argument type \(T \).

The final *Policy* argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the *policy documentation for more details.*

The functions return the result of *domain_error* whenever the result is undefined or complex: this occurs when \(x < 0 \).

The \(j_\nu \) function is cyclic like \(J_\nu \) but differs in its behaviour at the origin:
Likewise y_v is also cyclic for large x, but tends to $-\infty$ for small x:

Testing

There are two sets of test values: spot values calculated using functions.wolfram.com, and a much larger set of tests computed using a simplified version of this implementation (with all the special case handling removed).

Accuracy

Other than for some special cases, these functions are computed in terms of cyl_bessel_j and cyl_neumann: refer to these functions for accuracy data.

Implementation

Other than error handling and a couple of special cases these functions are implemented directly in terms of their definitions:
\[j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n+\frac{1}{2}}(z) \]
\[y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n+\frac{1}{2}}(z) \]

The special cases occur for:
\[j_0 = \text{sinc}_\pi(x) = \frac{\sin(x)}{x} \]
and for small \(x < 1 \), we can use the series:
\[j_n(z) = \sqrt{\frac{\pi}{4}} \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{z}{2}\right)^{2k+n}}{k! \Gamma(n+k+1+\frac{1}{2})} \]

which neatly avoids the problem of calculating 0/0 that can occur with the main definition as \(x \to 0 \).

Elliptic Integrals

Elliptic Integral Overview

The main reference for the elliptic integrals is:

Mathworld also contain a lot of useful background information:

As does Wikipedia Elliptic integral.

Notation

All variables are real numbers unless otherwise noted.

Definition

\[\int R(t, s) dt \]

is called elliptic integral if \(R(t, s) \) is a rational function of \(t \) and \(s \), and \(s^2 \) is a cubic or quartic polynomial in \(t \).

Elliptic integrals generally can not be expressed in terms of elementary functions. However, Legendre showed that all elliptic integrals can be reduced to the following three canonical forms:

Elliptic Integral of the First Kind (Legendre form)

\[F(\phi, k) = \int_{0}^{\phi} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} \]

Elliptic Integral of the Second Kind (Legendre form)

\[E(\phi, k) = \int_{0}^{\phi} \sqrt{1 - k^2 \sin^2 \theta} d\theta \]
Elliptic Integral of the Third Kind (Legendre form)

\[\Pi(n, \phi, k) = \int_{0}^{\phi} \frac{d\theta}{(1 - n\sin^2 \theta)\sqrt{1 - k^2\sin^2 \theta}} \]

where

\[k = \sin \alpha, \quad |k| \leq 1 \]

Note
- \(\phi \) is called the amplitude.
- \(k \) is called the modulus.
- \(\alpha \) is called the modular angle.
- \(n \) is called the characteristic.

Caution

Perhaps more than any other special functions the elliptic integrals are expressed in a variety of different ways. In particular, the final parameter \(k \) (the modulus) may be expressed using a modular angle \(\alpha \), or a parameter \(m \). These are related by:

\[k = \sin \alpha \]
\[m = k^2 = \sin^2 \alpha \]

So that the integral of the third kind (for example) may be expressed as either:

- \(\Pi(n, \phi, k) \)
- \(\Pi(n, \phi \setminus \alpha) \)
- \(\Pi(n, \phi| m) \)

To further complicate matters, some texts refer to the complement of the parameter \(m \), or \(1 - m \), where:

\[1 - m = 1 - k^2 = \cos^2 \alpha \]

This implementation uses \(k \) throughout: this matches the requirements of the Technical Report on C++ Library Extensions. However, you should be extra careful when using these functions!

When \(\phi = \pi / 2 \), the elliptic integrals are called *complete*.

Complete Elliptic Integral of the First Kind (Legendre form)

\[K(k) = F(\frac{\pi}{2}, k) = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2\sin^2 \theta}} \]

Complete Elliptic Integral of the Second Kind (Legendre form)

\[E(k) = E(\frac{\pi}{2}, k) = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - k^2\sin^2 \theta} d\theta \]
Complete Elliptic Integral of the Third Kind (Legendre form)

\[\prod (n, k) = \prod (n, \frac{\pi}{2}, k) = \int_{\frac{\pi}{2}}^{\pi} \frac{d\theta}{(1 - n \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta}} \]

Carlson [Carlson77] [Carlson78] gives an alternative definition of elliptic integral’s canonical forms:

Carlson’s Elliptic Integral of the First Kind

\[R_F(x, y, z) = \frac{1}{2} \int_{0}^{\infty} \left[(t + x)(t + y)(t + z) \right]^{-\frac{1}{2}} dt \]

where \(x, y, z \) are nonnegative and at most one of them may be zero.

Carlson’s Elliptic Integral of the Second Kind

\[R_D(x, y, z) = \frac{3}{2} \int_{x}^{\infty} \left[(t + x)(t + y) \right]^{-\frac{1}{2}} (t + z)^{-\frac{3}{2}} dt \]

where \(x, y \) are nonnegative, at most one of them may be zero, and \(z \) must be positive.

Carlson’s Elliptic Integral of the Third Kind

\[R_J(x, y, z, p) = \frac{3}{2} \int_{x}^{\infty} \left[(t + x)(t + y)(t + z) \right]^{-\frac{1}{2}} (t + p)^{-\frac{1}{2}} dt \]

where \(x, y, z \) are nonnegative, at most one of them may be zero, and \(p \) must be nonzero.

Carlson’s Degenerate Elliptic Integral

\[R_C(x, y) = \frac{1}{2} \int_{0}^{\infty} \left[(t + x)^{-\frac{1}{2}} (t + y)^{-1} \right] dt \]

where \(x \) is nonnegative and \(y \) is nonzero.

Note

\[R_C(x, y) = R_F(x, y) \]

\[R_D(x, y, z) = R_J(x, y, z, z) \]

Duplication Theorem

Carlson proved in [Carlson78] that

\[R_F(x, y, z) = 2 R_F(x + \lambda, y + \lambda, z + \lambda) \]

\[= R_F \left(\frac{x + \lambda}{4}, \frac{y + \lambda}{4}, \frac{z + \lambda}{4} \right) \]

\[\lambda = \sqrt{xy} + \sqrt{yz} + \sqrt{zx} \]

Carlson’s Formulas

The Legendre form and Carlson form of elliptic integrals are related by equations:
\begin{align*}
F(\varphi, k) &= \sin \varphi R_F(\cos^2 \varphi, 1 - k^2 \sin^2 \varphi, 1) \\
E(\varphi, k) &= \sin \varphi R_F(\cos^2 \varphi, 1 - k^2 \sin^2 \varphi, 1) - \frac{1}{3} k^2 \sin^3 \varphi R_D(\cos^2 \varphi, 1 - k^2 \sin^2 \varphi, 1) \\
\Pi(n, \varphi, k) &= \sin \varphi R_F(\cos^2 \varphi, 1 - k^2 \sin^2 \varphi, 1) + \frac{1}{3} n \sin^3 \varphi R_J(\cos^2 \varphi, 1 - k^2 \sin^2 \varphi, 1, 1 - n \sin^2 \varphi)
\end{align*}

In particular,
\begin{align*}
K(k) &= R_F(0, 1 - k^2, 1) \\
E(k) &= R_F(0, 1 - k^2, 1) - \frac{1}{3} k^2 R_D(0, 1 - k^2, 1) \\
\Pi(n, k) &= R_F(0, 1 - k^2, 1) + \frac{1}{3} n R_J(0, 1 - k^2, 1, 1 - n)
\end{align*}

Numerical Algorithms

The conventional methods for computing elliptic integrals are Gauss and Landen transformations, which converge quadratically and work well for elliptic integrals of the first and second kinds. Unfortunately they suffer from loss of significant digits for the third kind. Carlson’s algorithm [Carlson79] [Carlson78], by contrast, provides a unified method for all three kinds of elliptic integrals with satisfactory precisions.

References

Special mention goes to:

However the main references are:

The following references, while not directly relevent to our implementation, may also be of interest:

Elliptic Integrals - Carlson Form

Synopsis

```cpp
#include <boost/math/special_functions/ellint_rf.hpp>
namespace boost { namespace math {

    template <class T1, class T2, class T3>
    calculated-result-type ellint_rf(T1 x, T2 y, T3 z)

template <class T1, class T2, class T3, class Policy>
    calculated-result-type ellint_rf(T1 x, T2 y, T3 z, const Policy&) 
}} // namespaces

#include <boost/math/special_functions/ellint_rd.hpp>
namespace boost { namespace math {

    template <class T1, class T2, class T3>
    calculated-result-type ellint_rd(T1 x, T2 y, T3 z)

template <class T1, class T2, class T3, class Policy>
    calculated-result-type ellint_rd(T1 x, T2 y, T3 z, const Policy&) 
}} // namespaces

#include <boost/math/special_functions/ellint_rj.hpp>
namespace boost { namespace math {

    template <class T1, class T2, class T3, class T4>
    calculated-result-type ellint_rj(T1 x, T2 y, T3 z, T4 p)

template <class T1, class T2, class T3, class T4, class Policy>
    calculated-result-type ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy&) 
}} // namespaces

#include <boost/math/special_functions/ellint_rc.hpp>
namespace boost { namespace math {

    template <class T1, class T2>
    calculated-result-type ellint_rc(T1 x, T2 y)

template <class T1, class T2, class Policy>
    calculated-result-type ellint_rc(T1 x, T2 y, const Policy&) 
}} // namespaces
```

Description

These functions return Carlson's symmetrical elliptic integrals, the functions have complicated behavior over all their possible domains,
but the following graph gives an idea of their behavior:

![Graph showing Elliptic Integrals]

The return type of these functions is computed using the result type calculation rules when the arguments are of different types: otherwise the return is the same type as the arguments.

```cpp
template <class T1, class T2, class T3>
calculated-result-type ellint_rf(T1 x, T2 y, T3 z)

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_rf(T1 x, T2 y, T3 z, const Policy&)
```

Returns Carlson’s Elliptic Integral \(R_F\):

\[
R_F(x, y, z) = \frac{1}{2} \int_{0}^{\infty} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) dt
\]

Requires that all of the arguments are non-negative, and at most one may be zero. Otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

```cpp
template <class T1, class T2, class T3>
calculated-result-type ellint_rd(T1 x, T2 y, T3 z)

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_rd(T1 x, T2 y, T3 z, const Policy&)
```

Returns Carlson’s elliptic integral \(R_D\):

\[
R_D(x, y, z) = \frac{3}{2} \int_{0}^{\infty} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) dt
\]

Requires that \(x\) and \(y\) are non-negative, with at most one of them zero, and that \(z \geq 0\). Otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.
template <class T1, class T2, class T3, class T4>
calculated-result-type ellint_rj(T1 x, T2 y, T3 z, T4 p)

Returns Carlson's elliptic integral R_J:

$$R_J(x, y, z, p) = \frac{3}{2} \int_0^{\infty} \left((t + x)(t + y)(t + z) \right)^{-\frac{1}{2}} dt$$

Requires that x, y and z are non-negative, with at most one of them zero, and that $p \neq 0$. Otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

When $p < 0$ the function returns the Cauchy principal value using the relation:

$$(y + q)R_J(x, y, z, -q) = (p - y)R_J(x, y, z, p) - 3R_F(x, y, z)$$

with: $q > 0$ and:

$$p = y + \frac{(z - y)(y - x)}{(y + q)}$$

template <class T1, class T2>
calculated-result-type ellint_rc(T1 x, T2 y)

template <class T1, class T2, class Policy>
calculated-result-type ellint_rc(T1 x, T2 y, const Policy&)

Returns Carlson's elliptic integral R_C:

$$R_C(x, y) = \frac{1}{2} \int_0^{\infty} \left((t + x)^{-\frac{1}{2}}(t + y)^{-1} dt$$

Requires that $x > 0$ and that $y \neq 0$. Otherwise returns the result of domain_error.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

When $y < 0$ the function returns the Cauchy principal value using the relation:

$$R_C(x, -y) = \left(\frac{x}{x+y} \right)^2 R_C(x+y, y)$$

Testing

There are two sets of tests.

Spot tests compare selected values with test data given in:

Random test data generated using NTL::RR at 1000-bit precision and our implementation checks for rounding-errors and/or regressions.

There are also sanity checks that use the inter-relations between the integrals to verify their correctness: see the above Carlson paper for details.
Accuracy

These functions are computed using only basic arithmetic operations, so there isn't much variation in accuracy over differing platforms. Note that only results for the widest floating-point type on the system are given as narrower types have effectively zero error. All values are relative errors in units of epsilon.

Table 40. Errors Rates in the Carlson Elliptic Integrals

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>R_F</th>
<th>R_P</th>
<th>R_J</th>
<th>R_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32 / Visual C++ 8.0</td>
<td>Peak=2.6 Mean=0.9</td>
<td>P e a k = 2 . 9 Mean=0.75</td>
<td>Peak=2.4 Mean=0.6</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux / G++ 3.4</td>
<td>Peak=2.7 Mean=0.9</td>
<td>P e a k = 2 . 5 Mean=0.75</td>
<td>Peak=105 Mean=8 Peak=1.9 Mean=0.7</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>HP-UX / HP aCC 6</td>
<td>Peak=5.3 Mean=1.6</td>
<td>P e a k = 2 . 9 Mean=0.99</td>
<td>P e a k = 1 8 0 Mean=12 Peak=1.8 Mean=0.7</td>
<td></td>
</tr>
</tbody>
</table>

Implementation

The key of Carlson's algorithm [Carlson79] is the duplication theorem:

\[
R_F(x, y, z) = 2R_F(x + \lambda, y + \lambda, z + \lambda) = R_F\left(\frac{x + \lambda}{4}, \frac{y + \lambda}{4}, \frac{z + \lambda}{4}\right)
\]

\[
\lambda = \sqrt{xy} + \sqrt{yz} + \sqrt{zx}
\]

By applying it repeatedly, \(x, y, z\) get closer and closer. When they are nearly equal, the special case equation

\[
R_F(x, x, x) = \frac{1}{\sqrt{x}}
\]

is used. More specifically, \(R_F\) is evaluated from a Taylor series expansion to the fifth order. The calculations of the other three integrals are analogous.

For \(p < 0\) in \(R_J(x, y, z, p)\) and \(y < 0\) in \(R_C(x, y)\), the integrals are singular and their Cauchy principal values are returned via the relations:

\[
(y + q)R_J(x, y, z, \ - q) = (p - y)R_J(x, y, z, p) - 3R_F(x, y, z)
\]

\[
+ 3\left(\frac{xyz}{xz + pq}\right)^\frac{1}{2}R_C(xz + pq, pq)
\]

with: \(q > 0\)

and: \(p = y + \frac{(z - y)(y - x)}{(y + q)}\)

\[
R_C(x, - y) = \left(\frac{x}{x + y}\right)^\frac{1}{2}R_C(x + y, y)
\]
Elliptic Integrals of the First Kind - Legendre Form

Synopsis

```cpp
#include <boost/math/special_functions/ellint_1.hpp>
namespace boost { namespace math {

  template <class T1, class T2>
  calculated-result-type ellint_1(T1 k, T2 phi);

  template <class T1, class T2, class Policy>
  calculated-result-type ellint_1(T1 k, T2 phi, const Policy&);

  template <class T>
  calculated-result-type ellint_1(T k);

  template <class T, class Policy>
  calculated-result-type ellint_1(T k, const Policy&);

}} // namespaces
```

Description

These two functions evaluate the incomplete elliptic integral of the first kind $F(\phi, k)$ and its complete counterpart $K(k) = F(\pi/2, k)$.

The return type of these functions is computed using the `result type calculation rules` when `T1` and `T2` are different types: when they are the same type then the result is the same type as the arguments.

```cpp
template <class T1, class T2>
calculated-result-type ellint_1(T1 k, T2 phi);

template <class T1, class T2, class Policy>
calculated-result-type ellint_1(T1 k, T2 phi, const Policy&);
```

Returns the incomplete elliptic integral of the first kind $F(\phi, k)$:
\[F(\varphi, k) = \int_0^\varphi \frac{d\theta}{\sqrt{1 - k^2\sin^2\theta}} \]

Requires \(-1 \leq k \leq 1\), otherwise returns the result of \textbf{domain_error}.

The final \texttt{Policy} argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

```cpp
template <class T>
calculated-result-type ellint_1(T k);

template <class T>
calculated-result-type ellint_1(T k, const Policy&);
```

Returns the complete elliptic integral of the first kind \(K(k)\):

\[K(k) = F\left(\frac{\pi}{2}, k\right) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2\sin^2\theta}} \]

Requires \(-1 \leq k \leq 1\), otherwise returns the result of \textbf{domain_error}.

The final \texttt{Policy} argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Accuracy

These functions are computed using only basic arithmetic operations, so there isn’t much variation in accuracy over differing platforms. Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error. All values are relative errors in units of epsilon.

Table 41. Errors Rates in the Elliptic Integrals of the First Kind

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>F(\varphi, k)</th>
<th>K(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32 / Visual C++ 8.0</td>
<td>Peak=3 Mean=0.8</td>
<td>Peak=1.8 Mean=0.7</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux / G++ 3.4</td>
<td>Peak=2.6 Mean=1.7</td>
<td>Peak=2.2 Mean=1.8</td>
</tr>
<tr>
<td>113</td>
<td>HP-UX / HP aCC 6</td>
<td>Peak=4.6 Mean=1.5</td>
<td>Peak=3.7 Mean=1.5</td>
</tr>
</tbody>
</table>

Testing

The tests use a mixture of spot test values calculated using the online calculator at functions.wolfram.com, and random test data generated using NTL::RR at 1000-bit precision and this implementation.

Implementation

These functions are implemented in terms of Carlson’s integrals using the relations:

\[
\begin{align*}
F(-\varphi, k) & = -F(\varphi, k) \\
F(\varphi + m\pi, k) & = F(\varphi, k) + 2mK(k) \\
F(\varphi, k) & = \sin \varphi R_F(\cos^2 \varphi, 1 - k^2 \sin^2 \varphi, 1)
\end{align*}
\]

and
\[K(k) = R_F(0, 1 - k^2, 1) \]

Elliptic Integrals of the Second Kind - Legendre Form

Synopsis

```cpp
#include <boost/math/special_functions/ellint_2.hpp>

namespace boost { namespace math {

    template <class T1, class T2>
    calculated-result-type ellint_2(T1 k, T2 phi);

    template <class T1, class T2, class Policy>
    calculated-result-type ellint_2(T1 k, T2 phi, const Policy&);

    template <class T>
    calculated-result-type ellint_2(T k);

    template <class T, class Policy>
    calculated-result-type ellint_2(T k, const Policy&);

}} // namespaces
```

Description

These two functions evaluate the incomplete elliptic integral of the second kind \(E(\phi, k) \) and its complete counterpart \(E(k) = E(\pi/2, k) \).

The return type of these functions is computed using the *result type calculation rules* when \(T1 \) and \(T2 \) are different types: when they are the same type then the result is the same type as the arguments.
template <class T1, class T2> calculated-result-type ellint_2(T1 k, T2 phi);

template <class T1, class T2, class Policy> calculated-result-type ellint_2(T1 k, T2 phi, const Policy&);

Returns the incomplete elliptic integral of the second kind \(E(\phi, k)\):

\[
E(\phi, k) = \int_0^\phi \sqrt{1 - k^2 \sin^2 \theta} \, d\theta
\]

Requires \(-1 \leq k \leq 1\), otherwise returns the result of `domain_error`.

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

template <class T> calculated-result-type ellint_2(T k);

template <class T> calculated-result-type ellint_2(T k, const Policy&);

Returns the complete elliptic integral of the second kind \(E(k)\):

\[
E(k) = E\left(\frac{\pi}{2}, k\right) = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2 \theta} \, d\theta
\]

Requires \(-1 \leq k \leq 1\), otherwise returns the result of `domain_error`.

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Accuracy

These functions are computed using only basic arithmetic operations, so there isn’t much variation in accuracy over differing platforms. Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error. All values are relative errors in units of epsilon.

Table 42. Errors Rates in the Elliptic Integrals of the Second Kind

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>(F(\phi, k))</th>
<th>(K(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32 / Visual C++ 8.0</td>
<td>Peak=4.6 Mean=1.2</td>
<td>Peak=3.5 Mean=1.0</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux / G++ 3.4</td>
<td>Peak=4.3 Mean=1.1</td>
<td>Peak=4.6 Mean=1.2</td>
</tr>
<tr>
<td>113</td>
<td>HP-UX / HP aCC 6</td>
<td>Peak=5.8 Mean=2.2</td>
<td>Peak=10.8 Mean=2.3</td>
</tr>
</tbody>
</table>

Testing

The tests use a mixture of spot test values calculated using the online calculator at functions.wolfram.com, and random test data generated using NTL::RR at 1000-bit precision and this implementation.

Implementation

These functions are implemented in terms of Carlson’s integrals using the relations:
\[E(\varphi, k) = -E(\varphi, k) \]
\[E(\varphi + m\pi, k) = E(\varphi, k) + 2mE(k) \quad \varphi \notin [0, \frac{\pi}{2}] \]
\[E(\varphi, k) = \sin \varphi R_F(\cos^2 \varphi, 1 - k^2 \sin^2 \varphi, 1) \]
\[- \frac{1}{3} k^2 \sin^3 \varphi R_D(\cos^2 \varphi, 1 - k^2 \sin^2 \varphi, 1) \]

and
\[E(k) = R_F(0,1 - k^2, 1) - \frac{1}{3} k^2 R_D(0,1 - k^2, 1) \]

Elliptic Integrals of the Third Kind - Legendre Form

Synopsis

```cpp
#include <boost/math/special_functions/ellint_3.hpp>

namespace boost { namespace math {

    template <class T1, class T2, class T3>
    calculated-result-type ellint_3(T1 k, T2 n, T3 phi);

    template <class T1, class T2, class T3, class Policy>
    calculated-result-type ellint_3(T1 k, T2 n, T3 phi, const Policy&);

    template <class T1, class T2>
    calculated-result-type ellint_3(T1 k, T2 n);

    template <class T1, class T2, class Policy>
    calculated-result-type ellint_3(T1 k, T2 n, const Policy&);

}} // namespaces
```

Description

These two functions evaluate the incomplete elliptic integral of the third kind \(\Pi(n, \varphi, k) \) and its complete counterpart \(\Pi(n, k) = E(n, \pi/2, k) \).
The return type of these functions is computed using the **result type calculation rules** when the arguments are of different types: when they are the same type then the result is the same type as the arguments.

```cpp
template <class T1, class T2, class T3>
calculated-result-type ellint_3(T1 k, T2 n, T3 phi);

template <class T1, class T2, class T3, class Policy>
calculated-result-type ellint_3(T1 k, T2 n, T3 phi, const Policy&);
```

Returns the incomplete elliptic integral of the third kind $\Pi(n, \phi, k)$:

$$\Pi(n, \phi, k) = \int_0^\phi \frac{d\theta}{(1 - n\sin^2\theta)\sqrt{1 - k^2\sin^2\theta}}$$

Requires $-1 \leq k \leq 1$ and $n < 1/sin^2(\phi)$, otherwise returns the result of domain_error (outside this range the result would be complex).

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

```cpp
template <class T1, class T2>
calculated-result-type ellint_3(T1 k, T2 n);

template <class T1, class T2, class Policy>
calculated-result-type ellint_3(T1 k, T2 n, const Policy&);
```

Returns the complete elliptic integral of the first kind $\Pi(n, k)$:

$$\Pi(n, k) = \Pi(n, \pi/2, k) = \int_0^{\pi/2} \frac{d\theta}{(1 - n\sin^2\theta)\sqrt{1 - k^2\sin^2\theta}}$$

Requires $-1 \leq k \leq 1$ and $n < 1$, otherwise returns the result of domain_error (outside this range the result would be complex).

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Accuracy

These functions are computed using only basic arithmetic operations, so there isn’t much variation in accuracy over differing platforms. Note that only results for the widest floating point type on the system are given as narrower types have effectively zero error. All values are relative errors in units of epsilon.

Table 43. Errors Rates in the Elliptic Integrals of the Third Kind

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>$\Pi(n, \phi, k)$</th>
<th>$\Pi(n, k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32 / Visual C++ 8.0</td>
<td>Peak=29 Mean=2.2</td>
<td>Peak=3 Mean=0.8</td>
</tr>
<tr>
<td>64</td>
<td>Red Hat Linux / G++ 3.4</td>
<td>Peak=14 Mean=1.3</td>
<td>Peak=2.3 Mean=0.8</td>
</tr>
<tr>
<td>113</td>
<td>HP-UX / HP aCC 6</td>
<td>Peak=10 Mean=1.4</td>
<td>Peak=4.2 Mean=1.1</td>
</tr>
</tbody>
</table>

Testing

The tests use a mixture of spot test values calculated using the online calculator at functions.wolfram.com, and random test data generated using NTL::RR at 1000-bit precision and this implementation.
Implementation

The implementation for $\Pi(n, \phi, k)$ first siphons off the special cases:

$\Pi(0, \phi, k) = F(\phi, k)$

$\Pi(n, \pi/2, k) = \Pi(n, k)$

and

$$\Pi(n, \phi, 0) = \sqrt{\frac{1}{1-n}} \tan^{-1}(\sqrt{1-n} \tan \phi) \; ; \; n < 1$$

$$= \sqrt{\frac{1}{n-1}} \tanh^{-1}(\sqrt{n-1} \tan \phi) \; ; \; n > 1$$

$$= \tan \phi \; ; \; n = 1$$

Then if $n < 0$ the relations (A&S 17.7.15/16):

$$\sqrt{(1-n)(1-k^2/n)} \Pi(n, \phi, k) = \sqrt{(1-N)(1-k^2/N)} \Pi(N, \phi, k)$$

$$+ \frac{k^2}{n^2} F(\phi, k)$$

$$+ \tan^{-1}\left(\frac{p_2 \sin^2 \phi}{1 - k^2 \sin^2 \phi}\right)$$

$$N = \frac{(k^2-n)}{(1-n)}$$

$$p_2 = \sqrt{-\frac{n}{1-n}(k^2-n)}$$

are used to shift n to the range $[0, 1]$.

Then the relations:

$\Pi(n, -\phi, k) = -\Pi(n, \phi, k)$

$\Pi(n, \phi+k\pi, k) = \Pi(n, \phi, k) + 2m \Pi(n, k) ; n <= 1$

$\Pi(n, \phi+k\pi, k) = \Pi(n, \phi, k) ; n > 1$

are used to move ϕ to the range $[0, \pi/2]$.

The functions are then implemented in terms of Carlson’s integrals using the relations:

$$\Pi(n, \phi, k) = \sin \phi R_2(\cos^2 \phi, 1 - k^2 \sin^2 \phi, 1) + \frac{n}{3} \sin^3 \phi R_3(\cos^2 \phi, 1 - k^2 \sin^2 \phi, 1, 1 - n \sin^2 \phi)$$

and

$$\Pi(n, k) = R_2(0,1-k^2, 1) + \frac{n}{3} R_3(0,1-k^2, 1, 1-n)$$

1 I haven’t been able to find a literature reference for this relation, but it appears to be the convention used by Mathematica. Intuitively the first $2 \times m \times \Pi(n, k)$ terms cancel out as the derivative alternates between $+\infty$ and $-\infty$.
Zeta Functions

Riemann Zeta Function

Synopsis

```cpp
#include <boost/math/special_functions/zeta.hpp>

namespace boost { namespace math {
  template <class T>
  calculated-result-type zeta(T z);
  template <class T, class Policy>
  calculated-result-type zeta(T z, const Policy&);
}} // namespaces
```

The return type of these functions is computed using the result type calculation rules: the return type is double if T is an integer type, and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Description

```cpp
// namespaces
```

Returns the zeta function of z:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}$$

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along with comparisons to the GSL-1.9 and Cephes libraries. Unless otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.
Table 44. Errors In the Function zeta(z)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>$z > 0$</th>
<th>$z < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=0.99 Mean=0.1</td>
<td>Peak=7.1 Mean=3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GSL Peak=8.7 Mean=1.0</td>
<td>GSL Peak=137 Mean=14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cephes Peak=2.1 Mean=1.1</td>
<td>Cephes Peak=5084 Mean=470</td>
</tr>
<tr>
<td>64</td>
<td>RedHat Linux IA_EM64, gcc-4.1</td>
<td>Peak=0.99 Mean=0.5</td>
<td>Peak=570 Mean=60</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-4.1</td>
<td>Peak=0.99 Mean=0.5</td>
<td>Peak=559 Mean=56</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=1.0 Mean=0.4</td>
<td>Peak=1018 Mean=79</td>
</tr>
</tbody>
</table>

Testing

The tests for these functions come in two parts: basic sanity checks use spot values calculated using Mathworld's online evaluator, while accuracy checks use high-precision test values calculated at 1000-bit precision with NTL::RR and this implementation. Note that the generic and type-specific versions of these functions use differing implementations internally, so this gives us reasonably independent test data. Using our test data to test other "known good" implementations also provides an additional sanity check.

Implementation

All versions of these functions first use the usual reflection formulas to make their arguments positive:

$$\zeta(1-s) = 2\sin\left(\frac{\pi(1-s)}{2}\right)(2\pi^{-s})\Gamma(s)\zeta(s)$$

The generic versions of these functions are implemented using the series:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}$$

for large z, and using the globally convergent series:

$$\zeta(s) = \frac{1}{1 - 2^1 - s} \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} (k+1)^{-s}$$

In all other cases. The crossover point for these is chosen so that the first series is used only if it will converge reasonably quickly, the problem with this series is that convergence become slower the more terms you take, so we really do have to be certain of convergence before using this series, even though the alternative is often quite slow.

When the significand (mantissa) size is recognised (currently for 53, 64 and 113-bit reals, plus single-precision 24-bit handled via promotion to double) then a series of rational approximations devised by JM are used.

For $0 < z < 1$ the approximating form is:

$$\zeta(s) = \frac{C + R(1-s) - s}{1 - s}$$

For a rational approximation $R(1-z)$ and a constant C.

For $1 < z < 4$ the approximating form is:
\(\zeta(s) = C + R(s - n) + \frac{1}{s - 1} \)

For a rational approximation \(R(n - z) \) and a constant \(C \) and integer \(n \).

For \(z > 4 \) the approximating form is:

\(\zeta(z) = 1 + e^{R(z - n)} \)

For a rational approximation \(R(z - n) \) and integer \(n \), note that the accuracy required for \(R(z - n) \) is not full machine precision, but an absolute error of: \(\varepsilon/R(0) \). This saves us quite a few digits when dealing with large \(z \), especially when \(\varepsilon \) is small.

Exponential Integrals

Exponential Integral \(E_n \)

Synopsis

```cpp
#include <boost/math/special_functions/expint.hpp>
namespace boost { namespace math {
  template <class T>
  calculated-result-type expint(unsigned n, T z);
  template <class T, class Policy>
  calculated-result-type expint(unsigned n, T z, const Policy&);
}
```

The return type of these functions is computed using the `result type calculation rules`: the return type is `double` if \(T \) is an integer type, and \(T \) otherwise.

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Description

```cpp
template <class T>
  calculated-result-type expint(unsigned n, T z);

template <class T, class Policy>
  calculated-result-type expint(unsigned n, T z, const Policy&);
```

Returns the exponential integral \(E_n \) of \(z \):

\[E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt \]
Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along with comparisons to the Cephes library. Unless otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.

Table 45. Errors In the Function expint(n, z)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>En</th>
<th>E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=7.1</td>
<td>Mean=1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cephes</td>
<td>Peak=5.1</td>
<td>Mean=1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peak=0.99</td>
<td>Mean=0.5</td>
</tr>
<tr>
<td>64</td>
<td>RedHat Linux IA EM64, gcc-4.1</td>
<td>Peak=9.9</td>
<td>Mean=2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redhat Linux IA64, gcc-4.1</td>
<td>Peak=9.9</td>
<td>Mean=2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peak=0.97</td>
<td>Mean=0.4</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=23.3</td>
<td>Mean=3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peak=1.6</td>
<td>Mean=0.5</td>
</tr>
</tbody>
</table>

Testing

The tests for these functions come in two parts: basic sanity checks use spot values calculated using Mathworld's online evaluator, while accuracy checks use high-precision test values calculated at 1000-bit precision with NTL::RR and this implementation. Note that the generic and type-specific versions of these functions use differing implementations internally, so this gives us reasonably independent test data. Using our test data to test other "known good" implementations also provides an additional sanity check.

Implementation

The generic version of this function uses the continued fraction:

\[
E_n(x) = \frac{e^{-x}}{n + x - \frac{2 + n + x - \frac{4 + n + x - \frac{6 + n + x - \frac{8 + n + x - \cdots}}{3(n+2)}}{2(n+1)}}}
\]
for large \(x \) and the infinite series:

\[
E_n(x) = \frac{(-z)^{n-1}}{(n-1)!} \psi(n) - \log(z) - \sum_{k=0, k\neq n-1}^{\infty} \frac{(-1)^k z^k}{(k-n+1)k!}
\]

for small \(x \).

Where the precision of \(x \) is known at compile time and is 113 bits or fewer in precision, then rational approximations devised by JM are used for the \(n == 1 \) case.

For \(x < 1 \) the approximating form is a minimax approximation:

\[
E_1(x) = x + \log(x) + c + R(x)
\]

and for \(x > 1 \) a Chebyshev interpolated approximation of the form:

\[
E_1(x) = \frac{e^{-x}}{x} \left(1 + R \left(\frac{1}{x} \right) \right)
\]

is used.

Exponential Integral Ei

Synopsis

```cpp
#include <boost/math/special_functions/expint.hpp>

namespace boost { namespace math {

    template <class T>
    calculated-result-type expint(T z);

    template <class T, class Policy>
    calculated-result-type expint(T z, const Policy&);

}} // namespaces
```

The return type of these functions is computed using the result type calculation rules: the return type is double if \(T \) is an integer type, and \(T \) otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Description

```cpp
template <class T>
    calculated-result-type expint(T z);

template <class T, class Policy>
    calculated-result-type expint(T z, const Policy&);
```

Returns the exponential integral of \(z \):

\[
Ei(x) = -E_1(-x) = \int_{x}^{\infty} \frac{e^{-t}}{t} dt
\]
Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types, along with comparisons to Cody's SPECFUN implementation and the GSL-1.9 library. Unless otherwise specified any floating point type that is narrower than the one shown will have effectively zero error.

Table 46. Errors In the Function expint(z)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform and Compiler</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Win32, Visual C++ 8</td>
<td>Peak=2.4 Mean=0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GSL Peak=8.9 Mean=0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPECFUN (Cody) Peak=2.5 Mean=0.6</td>
</tr>
<tr>
<td>64</td>
<td>RedHat Linux IA_EM64, gcc-4.1</td>
<td>Peak=5.1 Mean=0.8</td>
</tr>
<tr>
<td>64</td>
<td>Redhat Linux IA64, gcc-4.1</td>
<td>Peak=5.0 Mean=0.8</td>
</tr>
<tr>
<td>113</td>
<td>HPUX IA64, aCC A.06.06</td>
<td>Peak=1.9 Mean=0.63</td>
</tr>
</tbody>
</table>

It should be noted that all three libraries tested above offer sub-epsilon precision over most of their range.

GSL has the greatest difficulty near the positive root of En, while Cody's SPECFUN along with this implementation increase their error rates very slightly over the range [4,6].

Testing

The tests for these functions come in two parts: basic sanity checks use spot values calculated using Mathworld's online evaluator, while accuracy checks use high-precision test values calculated at 1000-bit precision with NTL::RR and this implementation. Note that the generic and type-specific versions of these functions use differing implementations internally, so this gives us reasonably independent test data. Using our test data to test other "known good” implementations also provides an additional sanity check.
Implementation

For $x < 0$ this function just calls $\zeta(1,-x)$: which in turn is implemented in terms of rational approximations when the type of x has 113 or fewer bits of precision.

For $x > 0$ the generic version is implemented using the infinite series:

$$Ei(z) = \log(z) + \gamma + \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

However, when the precision of the argument type is known at compile time and is 113 bits or less, then rational approximations devised by JM are used.

For $0 < z < 6$ a root-preserving approximation of the form:

$$Ei(z) = \log\left(\frac{z}{z_0}\right) + (z - z_0)R\left(\frac{z}{3} - 1\right)$$

is used, where z_0 is the positive root of the function, and $R(z/3 - 1)$ is a minimax rational approximation rescaled so that it is evaluated over $[-1,1]$. Note that while the rational approximation over $[0,6]$ converges rapidly to the minimax solution it is rather ill-conditioned in practice. Cody and Thacher\(^2\) experienced the same issue and converted the polynomials into Chebyshev form to ensure stable computation. By experiment we found that the polynomials are just as stable in polynomial as Chebyshev form, *provided* they are computed over the interval $[-1,1]$.

Over the a series of intervals $[a,b]$ and $[b,\infty]$ the rational approximation takes the form:

$$Ei(z) = z + e^z\left(c + R(t)\right)$$

where c is a constant, and $R(t)$ is a minimax solution optimised for low absolute error compared to c. Variable t is $1/z$ when the range in infinite and $2z/(b-a) - (2a/(b-a) + 1)$ otherwise: this has the effect of scaling z to the interval $[-1,1]$. As before rational approximations over arbitrary intervals were found to be ill-conditioned: Cody and Thacher solved this issue by converting the polynomials to their J-Fraction equivalent. However, as long as the interval of evaluation was $[-1,1]$ and the number of terms carefully chosen, it was found that the polynomials could be evaluated to suitable precision: error rates are typically 2 to 3 epsilon which is comparable to the error rate that Cody and Thacher achieved using J-Fractions, but marginally more efficient given that fewer divisions are involved.

Logs, Powers, Roots and Exponentials

log1p

```cpp
#include <boost/math/special_functions/log1p.hpp>

namespace boost { namespace math {

    template <class T>
    calculated-result-type log1p(T x);

    template <class T, class Policy>
    calculated-result-type log1p(T x, const Policy&);

}} // namespaces
```

Returns the natural logarithm of $x+1$.

The return type of this function is computed using the *result type calculation rules*: the return is `double` when `x` is an integer type and `T` otherwise.

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the *policy documentation* for more details.

There are many situations where it is desirable to compute \(\log(x+1) \). However, for small `x` then `x+1` suffers from catastrophic cancellation errors so that \(x+1 \approx 1 \) and \(\log(x+1) \approx 0 \), when in fact for very small `x`, the best approximation to \(\log(x+1) \) would be \(x \). `log1p` calculates the best approximation to \(\log(1+x) \) using a Taylor series expansion for accuracy (less than 2\(\varepsilon \)). Alternatively note that there are faster methods available, for example using the equivalence:

\[
\log(1+x) = (\log(1+x) \times x) / ((1-x) - 1)
\]

However, experience has shown that these methods tend to fail quite spectacularly once the compiler's optimizations are turned on, consequently they are used only when known not to break with a particular compiler. In contrast, the series expansion method seems to be reasonably immune to optimizer-induced errors.

Finally when `BOOST_HAS_LOG1P` is defined then the `float`/`double`/`long double` specializations of this template simply forward to the platform's native (POSIX) implementation of this function.

The following graph illustrates the behaviour of `log1p`:

![Graph of log1p](image)

Accuracy

For built in floating point types `log1p` should have approximately 1 epsilon accuracy.

Testing

A mixture of spot test sanity checks, and random high precision test values calculated using `NTL::RR` at 1000-bit precision.
expm1

```cpp
#include <boost/math/special_functions/expm1.hpp>

namespace boost { namespace math {

  template <class T>
  calculated-result-type expm1(T x);

  template <class T, class Policy>
  calculated-result-type expm1(T x, const Policy&);

}} // namespaces
```

Returns $e^x - 1$.

The return type of this function is computed using the *result type calculation rules*: the return is `double` when x is an integer type and T otherwise.

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

For small x, then e^x is very close to 1, as a result calculating $e^x - 1$ results in catastrophic cancellation errors when x is small. `expm1` calculates $e^x - 1$ using rational approximations (for up to 128-bit long doubles), otherwise via a series expansion when x is small (giving an accuracy of less than 2).

Finally when `BOOST_HAS_EXPM1` is defined then the `float/double/long double` specializations of this template simply forward to the platform's native (POSIX) implementation of this function.

The following graph illustrates the behaviour of `expm1`:

![Graph of expm1](image)

Accuracy

For built in floating point types `expm1` should have approximately 1 epsilon accuracy.
Testing

A mixture of spot test sanity checks, and random high precision test values calculated using NTL::RR at 1000-bit precision.

cbrt

```cpp
#include <boost/math/special_functions/cbrt.hpp>

namespace boost { namespace math {

    template <class T>
    calculated-result-type cbrt(T x);

    template <class T, class Policy>
    calculated-result-type cbrt(T x, const Policy &);

}} // namespaces
```

Returns the cubed root of x: $x^{1/3}$.

The return type of this function is computed using the result type calculation rules: the return is double when x is an integer type and T otherwise.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Implemented using Halley iteration.

The following graph illustrates the behaviour of cbrt:

Accuracy

For built in floating-point types cbrt should have approximately 2 epsilon accuracy.

Testing

A mixture of spot test sanity checks, and random high precision test values calculated using NTL::RR at 1000-bit precision.
sqrt1pm1

```
#include <boost/math/special_functions/sqrt1pm1.hpp>

namespace boost{ namespace math{

    template <class T> calculated-result-type sqrt1pm1(T x);
    template <class T, class Policy> calculated-result-type sqrt1pm1(T x, const Policy&);

}} // namespaces
```

Returns \(\sqrt{1+x} - 1 \).

The return type of this function is computed using the *result type calculation rules*: the return is `double` when \(x \) is an integer type and \(T \) otherwise.

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

This function is useful when you need the difference between sqrt(\(x \)) and 1, when \(x \) is itself close to 1.

Implemented in terms of `log1p` and `expm1`.

The following graph illustrates the behaviour of `sqrt1pm1`:

![Graph illustrating the behaviour of sqrt1pm1](image)

Accuracy

For built in floating-point types `sqrt1pm1` should have approximately 3 epsilon accuracy.

Testing

A selection of random high precision test values calculated using NTL::RR at 1000-bit precision.
powm1

```cpp
#include <boost/math/special_functions/powm1.hpp>

namespace boost { namespace math {

    template <class T1, class T2>
    calculated-result-type
    powm1(T1 x, T2 y);

    template <class T1, class T2, class Policy>
    calculated-result-type
    powm1(T1 x, T2 y, const Policy&);

}} // namespaces
```

Returns $x^y - 1$.

The return type of this function is computed using the result type calculation rules when T1 and T2 are different types.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

There are two domains where this is useful: when y is very small, or when x is close to 1.

Implemented in terms of expm1.

The following graph illustrates the behaviour of powm1:

```
Accuracy

Should have approximately 2-3 epsilon accuracy.

Testing

A selection of random high precision test values calculated using NTL::RR at 1000-bit precision.
**hypot**

```cpp
template <class T1, class T2>
calculated-result-type hypot(T1 x, T2 y);

template <class T1, class T2, class Policy>
calculated-result-type hypot(T1 x, T2 y, const Policy&);
```

**Effects:** computes \( \text{hypot}(x, y) = \sqrt{x^2 + y^2} \) in such a way as to avoid undue underflow and overflow.

The return type of this function is computed using the result type calculation rules when T1 and T2 are of different types.

The final Policy argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

When calculating \( \text{hypot}(x, y) = \sqrt{x^2 + y^2} \) it's quite easy for the intermediate terms to either overflow or underflow, even though the result is in fact perfectly representable.

**Implementation**

The function is even and symmetric in x and y, so first take assume \( x, y > 0 \) and \( x > y \) (we can permute the arguments if this is not the case).

Then if \( x \times \varepsilon \geq y \) we can simply return \( x \).

Otherwise the result is given by:

\[
\text{hypot}(x, y) = x \sqrt{1 + \left(\frac{y}{x}\right)^2}
\]

**Compile Time Power of a Runtime Base**

The `pow` function effectively computes the compile-time integral power of a run-time base.

**Synopsis**

```cpp
#include <boost/math/special_functions/pow.hpp>

namespace boost { namespace math {

template <int N, typename T>
calculated-result-type pow(T base);

template <int N, typename T, class Policy>
calculated-result-type pow(T base, const Policy& policy);

}}
```

**Rationale and Usage**

Computing the power of a number with an exponent that is known at compile time is a common need for programmers. In such cases, the usual method is to avoid the overhead implied by the `pow`, `powf` and `powl` C functions by hardcoding an expression such as:
// Hand-written 8th power of a 'base' variable
double result = base*base*base*base*base*base*base*base;

However, this kind of expression is not really readable (knowing the value of the exponent involves counting the number of occurrences of \textit{base}), error-prone (it's easy to forget an occurrence), syntactically bulky, and non-optimal in terms of performance.

The \texttt{pow} function of Boost.Math helps writing this kind expression along with solving all the problems listed above:

// 8th power of a 'base' variable using math::pow
double result = pow<8>(base);

The expression is now shorter, easier to read, safer, and even faster. Indeed, \texttt{pow} will compute the expression such that only \text{log2}(N) products are made for a power of \textit{N}. For instance in the example above, the resulting expression will be the same as if we had written this, with only one computation of each identical subexpression:

// Internal effect of pow\texttt{<8>}(base)
double result = ((base*base)*(base*base))*((base*base)*(base*base));

Only 3 different products were actually computed.

\textbf{Return Type}

The return type of these functions is computed using the \textit{result type calculation rules}. For example:

- If \texttt{T} is a \texttt{float}, the return type is a \texttt{float}.
- If \texttt{T} is a \texttt{long double}, the return type is a \texttt{long double}.
- Otherwise, the return type is a \texttt{double}.

\textbf{Policies}

The final \texttt{Policy} argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the \textit{policy documentation} for more details.

\textbf{Error Handling}

Two cases of errors can occur when using \texttt{pow}:

- In case of null base and negative exponent, an \texttt{overflow_error} occurs since this operation is a division by 0 (it equals to 1/0).
- In case of null base and null exponent, an \texttt{indeterminate_result_error} occurs since the result of this operation is indeterminate. Those errors follow the \textit{general policies of error handling in Boost.Math}.

The default overflow error policy is \texttt{throw\_on\_error}. A call like \texttt{pow<-2>(0)} will thus throw a \texttt{std::overflow\_error} exception. As shown in the link given above, other error handling policies can be used:

- \texttt{errno\_on\_error}: Sets \texttt{errno} to \texttt{ERANGE} and returns \texttt{std::numeric\_limits<T>::infinity()}.
- \texttt{ignore\_error}: \texttt{Returns} \texttt{std::numeric\_limits<T>::infinity()}.
- \texttt{user\_error}: \texttt{Returns} the result of \texttt{boost::math::policies::user\_overflow\_error}; this function must be defined by the user.

The default indeterminate result error policy is \texttt{ignore\_error}, which for this function returns 1 since it's the most commonly chosen result for a power of 0. Here again, other error handling policies can be used:

- \texttt{throw\_on\_error}: \texttt{Throws} \texttt{std::domain\_error}
• **errno_on_error**: Sets `::errno` to EDOM and returns 1.

• **user_error**: Returns the result of `boost::math::policies::user_indeterminate_result_error`; this function must be defined by the user.

Here is an example of error handling customization where we want to specify the result that has to be returned in case of error. We will thus use the `user_error` policy, by passing as second argument an instance of an overflow_error policy templated with `user_error`:

```cpp
// First we open the boost::math::policies namespace and define the 'user_overflow_error'
// by making it return the value we want in case of error (-1 here)
namespace boost { namespace math { namespace policies {
template <class T>
T user_overflow_error(const char*, const char*, const T&)
{ return -1; }
}}}

// Then we invoke pow and indicate that we want to use the user_error policy
using boost::math::policies;
double result = pow<-5>(base, policy<overflow_error<user_error>>());

// We can now test the returned value and treat the special case if needed:
if (result == -1)
{
 // there was an error, do something...
}
```

Another way is to redefine the default `overflow_error` policy by using the `BOOST_MATH_OVERFLOW_ERROR_POLICY` macro. Once the `user_overflow_error` function is defined as above, we can achieve the same result like this:

```cpp
// Redefine the default error_overflow policy
#define BOOST_MATH_OVERFLOW_ERROR_POLICY user_error

#include <boost/math/special_functions/pow.hpp>

double result = pow<-5>(base);
```

### Acknowledgements

Bruno Lalande submitted this addition to Boost.Math.

Thanks to Joaquín López Muñoz and Scott McMurray for their help in improving the implementation.

### References


### Sinus Cardinal and Hyperbolic Sinus Cardinal Functions

#### Sinus Cardinal and Hyperbolic Sinus Cardinal Functions Overview

The Sinus Cardinal family of functions (indexed by the family of indices $a > 0$) is defined by

$$
sinc_a(x) = \frac{\sin(\frac{\pi x}{a})}{\frac{\pi x}{a}}
$$
it sees heavy use in signal processing tasks.

By analogy, the **Hyperbolic Sinus Cardinal** family of functions (also indexed by the family of indices $a > 0$) is defined by

$$\text{sinhc}_a(x) = \frac{\sinh\left(\frac{\pi x}{a}\right)}{\frac{\pi x}{a}}$$

These two families of functions are composed of entire functions.

These functions (**sinc_pi** and **sinhc_pi**) are needed by our implementation of quaternions and octonions.

*Sinus Cardinal of index $\pi$ (purple) and Hyperbolic Sinus Cardinal of index $\pi$ (red) on $R$*
# sinc_pi

```cpp
#include <boost/math/special_functions/sinc.hpp>

template<class T>
calculated-result-type sinc_pi(const T x);

template<class T, class Policy>
calculated-result-type sinc_pi(const T x, const Policy&);

template<class T, template<typename> class U>
U<T> sinc_pi(const U<T> x);

template<class T, template<typename> class U, class Policy>
U<T> sinc_pi(const U<T> x, const Policy&);
```

Computes the **Sinus Cardinal** of x:

\[ \text{sinc}_{\pi}(x) = \frac{\sin(x)}{x} \]

The second form is for complex numbers, quaternions, octonions etc. Taylor series are used at the origin to ensure accuracy.

![Graph of sinc_pi](image)

The final **Policy** argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the **policy documentation for more details**.
sinhc_pi

#include <boost/math/special_functions/sinhc.hpp>

template<class T>
calculated-result-type sinhc_pi(const T x);

template<class T, class Policy>
calculated-result-type sinhc_pi(const T x, const Policy&);

template<typename T, template<typename> class U>
U<T> sinhc_pi(const U<T> x);

template<class T, template<typename> class U, class Policy>
U<T> sinhc_pi(const U<T> x, const Policy&);

Computes \( \text{sinhc}\_\pi(x) = \frac{\sinh(x)}{x} \) the Hyperbolic Sinus Cardinal of \( x \):

\[ \text{sinhc} \_ \pi(x) = \frac{\sinh(x)}{x} \]

The second form is for complex numbers, quaternions, octonions etc. Taylor series are used at the origin to ensure accuracy.

The return type of the first form is computed using the \textit{result type calculation rules} when \( T \) is an integer type.

The final \textit{Policy} argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.
Inverse Hyperbolic Functions

Inverse Hyperbolic Functions Overview

The exponential function is defined, for all objects for which this makes sense, as the power series

\[
\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \text{ with } n!
\]

being the factorial of \( n \). In particular, the exponential function is well defined for real numbers, complex numbers, quaternions, octonions, and matrices of complex numbers, among others.

Graph of \( \exp(x) \) on \( \mathbb{R} \)

Real and Imaginary parts of \( \exp(x) \) on \( \mathbb{C} \)
The hyperbolic functions are defined as power series which can be computed (for reals, complex, quaternions and octonions) as:

Hyperbolic cosine:
$$\cosh(x) = \frac{\exp(x) + \exp(-x)}{2}$$

Hyperbolic sine:
$$\sinh(x) = \frac{\exp(x) - \exp(-x)}{2}$$

Hyperbolic tangent:
$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

*Trigonometric functions on R (cos: purple; sin: red; tan: blue)*
Hyperbolic functions on $r$ (cosh: purple; sinh: red; tanh: blue)
The hyperbolic sine is one to one on the set of real numbers, with range the full set of reals, while the hyperbolic tangent is also one to one on the set of real numbers but with range \([0; +\infty]\), and therefore both have inverses. The hyperbolic cosine is one to one from \([-\infty; +1]\) onto \([-\infty; -1]\) (and from \([+1; +\infty]\) onto \([-\infty; -1]\)); the inverse function we use here is defined on \([-\infty; -1]\) with range \([-\infty; +1]\).

The inverse of the hyperbolic tangent is called the Argument hyperbolic tangent, and can be computed as
\[
\text{atanh}(x) = \log\left(\frac{1 + x}{1 - x}\right).
\]

The inverse of the hyperbolic sine is called the Argument hyperbolic sine, and can be computed (for \([-1; -1+\epsilon]\)) as
\[
\text{asinh}(x) = \log(x + \sqrt{x^2 + 1}).
\]

The inverse of the hyperbolic cosine is called the Argument hyperbolic cosine, and can be computed as
\[
\text{acosh}(x) = \log(x + \sqrt{x^2 - 1}).
\]

**acosh**

```cpp
#include <boost/math/special_functions/acosh.hpp>

template<class T>
calculated-result-type acosh(const T x);

template<class T, class Policy>
calculated-result-type acosh(const T x, const Policy&);
```

Computes the reciprocal of (the restriction to the range of \([0; +\infty]\)) the hyperbolic cosine function, at \(x\). Values returned are positive.
If \( x \) is in the range \( ]-\infty;+1[ \) then returns the result of \texttt{domain\_error}.

The return type of this function is computed using the \textit{result type calculation rules}: the return type is \texttt{double} when \( T \) is an integer type, and \( T \) otherwise.

The final \texttt{Policy} argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the \texttt{policy} documentation for more details.

**Accuracy**

Generally accuracy is to within 1 or 2 epsilon across all supported platforms.

**Testing**

This function is tested using a combination of random test values designed to give full function coverage computed at high precision using the "naive" formula:

\[
\text{acosh}(x) = \ln(x + \sqrt{x^2 - 1})
\]

along with a selection of sanity check values computed using functions.wolfram.com to at least 50 decimal digits.

**Implementation**

For sufficiently large \( x \), we can use the approximation:

\[
\text{acosh}(x) \approx \ln(2x) \quad ; \quad x > \frac{1}{\sqrt{\varepsilon}}
\]

For \( x \) sufficiently close to 1 we can use the approximation:

\[
\text{acosh}(x) \approx \sqrt{2y} \left( 1 + \frac{y}{12} + \frac{3y^2}{160} \right) \quad ; \quad y = 1 - x \quad \land \quad y < \sqrt{\varepsilon}
\]

Otherwise for \( x \) close to 1 we can use the following rearrangement of the primary definition to preserve accuracy:

\[
\text{acosh}(x) = \log1p(y + \sqrt{y^2 + 2y}) \quad ; \quad y = x - 1
\]
Otherwise the primary definition is used:

\[ \text{acosh}(x) = \ln(x + \sqrt{x^2 - 1}) \]

**asinh**

```cpp
#include <boost/math/special_functions/asinh.hpp>

template<class T>
calculated-result-type asinh(const T x);

template<class T, class Policy>
calculated-result-type asinh(const T x, const Policy&);
```

Computes the reciprocal of the hyperbolic sine function.

The return type of this function is computed using the result type calculation rules: the return type is `double` when `T` is an integer type, and `T` otherwise.

![Graph of asinh function](attachment:image.png)

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

**Accuracy**

Generally accuracy is to within 1 or 2 epsilon across all supported platforms.

**Testing**

This function is tested using a combination of random test values designed to give full function coverage computed at high precision using the "naive" formula:

\[ \text{asinh}(x) = \ln(x + \sqrt{x^2 + 1}) \]

along with a selection of sanity check values computed using functions.wolfram.com to at least 50 decimal digits.
**Implementation**

For sufficiently large $x$ we can use the approximation:

$$\text{asinh}(x) \approx \ln(2x) + \frac{1}{4x^2} ; \quad x > \frac{1}{\sqrt{\epsilon}}$$

While for very small $x$ we can use the approximation:

$$\text{asinh}(x) \approx x - \frac{x^3}{6} ; \quad x < \sqrt{\epsilon}$$

For $0.5 > x > \epsilon$ the following rearrangement of the primary definition is used:

$$\text{asinh}(x) = \log(1 + \sqrt{1 + x^2})$$

Otherwise evaluation is via the primary definition:

$$\text{asinh}(x) = \log(1 + \sqrt{1 + x^2})$$

**atanh**

```cpp
#include <boost/math/special_functions/atanh.hpp>

template<class T>
calculated-result-type atanh(const T x);

template<class T, class Policy>
calculated-result-type atanh(const T x, const Policy&);
```

Computes the reciprocal of the hyperbolic tangent function, at $x$.

The final `Policy` argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

If $x$ is in the range $]-\infty; -1[$ or in the range $]1; +\infty[$ then returns the result of `domain_error`.

If $x$ is in the range $]-1; -1+\epsilon[$, then the result of `overflow_error` is returned, with $\epsilon$ denoting `numeric_limits<T>::epsilon()`.

If $x$ is in the range $]1+\epsilon; 1[$, then the result of `overflow_error` is returned, with $\epsilon$ denoting `numeric_limits<T>::epsilon()`.

The return type of this function is computed using the `result type calculation rules`: the return type is `double` when $T$ is an integer type, and $T$ otherwise.
Accuracy

Generally accuracy is to within 1 or 2 epsilon across all supported platforms.

Testing

This function is tested using a combination of random test values designed to give full function coverage computed at high precision using the "naive" formula:

$$ \text{atanh}(x) = \frac{\ln\left(\frac{1 + x}{1 - x}\right)}{2} $$

along with a selection of sanity check values computed using functions.wolfram.com to at least 50 decimal digits.

Implementation

For sufficiently small $x$ we can use the approximation:

$$ \text{atanh}(x) \approx x + \frac{x^3}{3} ; \quad x < \sqrt{6} $$

Otherwise the primary definition:

$$ \text{atanh}(x) = \frac{\ln\left(\frac{1 + x}{1 - x}\right)}{2} $$

or it's equivalent form:

$$ \text{atanh}(x) = \frac{\log_{1p}(x) - \log_{1p}(-x)}{2} $$

is used.
Floating Point Utilities

Rounding Truncation and Integer Conversion

Rounding Functions

```cpp
#include <boost/math/special_functions/round.hpp>

template <class T>
T round(const T& v);

template <class T, class Policy>
T round(const T& v, const Policy&);

template <class T>
int iround(const T& v);

template <class T, class Policy>
int iround(const T& v, const Policy&);

template <class T>
long lround(const T& v);

template <class T, class Policy>
long lround(const T& v, const Policy&);

template <class T>
long long llround(const T& v);

template <class T, class Policy>
long long llround(const T& v, const Policy&);
```

These functions return the closest integer to the argument \( v \).

Halfway cases are rounded away from zero, regardless of the current rounding direction.

If the argument \( v \) is either non-finite or else outside the range of the result type, then returns the result of `rounding_error`; by default this throws an instance of `boost::math::rounding_error`.

Truncation Functions

```cpp
#include <boost/math/special_functions/trunc.hpp>
```
The `trunc` functions round their argument to the integer value, nearest to but no larger in magnitude than the argument.

For example `itrunc(3.7)` would return 3 and `ltrunc(-4.6)` would return -4.

If the argument `v` is either non-finite or else outside the range of the result type, then returns the result of `rounding_error`: by default this throws an instance of `boost::math::rounding_error`.

### Integer and Fractional Part Splitting (modf)

```cpp
#include <boost/math/special_functions/modf.hpp>
```

The `modf` functions store the integer part of `v` in `*ipart` and return the fractional part of `v`.

```cpp
template <class T>
T modf(const T& v, T* ipart);

template <class T, class Policy>
T modf(const T& v, T* ipart, const Policy&);

template <class T>
T modf(const T& v, int* ipart);

template <class T, class Policy>
T modf(const T& v, int* ipart, const Policy&);

template <class T>
T modf(const T& v, long* ipart);

template <class T, class Policy>
T modf(const T& v, long* ipart, const Policy&);

template <class T>
T modf(const T& v, long long* ipart);

template <class T, class Policy>
T modf(const T& v, long long* ipart, const Policy&);
```
If the argument \( v \) is either non-finite or else outside the range of the result type, then returns the result of \texttt{rounding\_error}: by default this throws an instance of boost::math::rounding\_error.

## Floating-Point Classification: Infinities and NaN's

### Synopsis

```cpp
#define FP_ZERO /* implementation specific value */
#define FP_NORMAL /* implementation specific value */
#define FP_INFINITE /* implementation specific value */
#define FP_NAN /* implementation specific value */
#define FP_SUBNORMAL /* implementation specific value */

template <class T>
int fpclassify(T t);

template <class T>
bool isfinite(T z); // Neither infinity nor NaN.

template <class T>
bool isinf(T t); // Infinity (+ or -).

template <class T>
bool isnan(T t); // NaN.

template <class T>
bool isnormal(T t); // isfinite and not denormalised.

#include <boost\math\special_functions\fpclassify.hpp>
```

to use these functions.

### Description

These functions provide the same functionality as the macros with the same name in C99, indeed if the C99 macros are available, then these functions are implemented in terms of them, otherwise they rely on std::numeric\_limits<> to function.

Note that the definition of these functions does not suppress the definition of these names as macros by math.h on those platforms that already provide these as macros. That mean that the following have differing meanings:
using namespace boost::math;

// This might call a global macro if defined,
// but might not work if the type of z is unsupported
// by the std lib macro:
isnan(z);

// This calls the Boost version
// (found via the "using namespace boost::math" declaration)
// it works for any type that has numeric_limits support for type z:
(isnan)(z);

// As above but with namespace qualification.
(BOOST_MATH_ISNAN)(z);

// This will cause a compiler error if isnan is a native macro:
boost::math::isnanz;
// So always use instead:
(BOOST_MATH_ISNAN)(z);

// You can also add a using statment,
// globally to a .cpp file, or to a local function in a .hpp file.
using boost::math::isnanz;
// so you can write the shorter and less cluttered
(isnan)(z)
// But, as above, if isnan is a native macro, this causes a compiler error,
// because the macro always 'gets' the name first, unless enclosed in () brackets.

Detailed descriptions for each of these functions follows:

template <class T>
int fpclassify(T t);

Returns an integer value that classifies the value t:

<table>
<thead>
<tr>
<th>fpclassify value</th>
<th>class of t.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP_ZERO</td>
<td>If t is zero.</td>
</tr>
<tr>
<td>FP_NORMAL</td>
<td>If t is a non-zero, non-denormalised finite value.</td>
</tr>
<tr>
<td>FP_INFINITE</td>
<td>If t is plus or minus infinity.</td>
</tr>
<tr>
<td>FP_NAN</td>
<td>If t is a NaN.</td>
</tr>
<tr>
<td>FP_SUBNORMAL</td>
<td>If t is a denormalised number.</td>
</tr>
</tbody>
</table>

template <class T>
bool isfinite(T z);

Returns true only if z is not an infinity or a NaN.

template <class T>
bool isinf(T t);

Returns true only if z is plus or minus infinity.
template <class T>
bool isnan(T t);

Returns true only if \( z \) is a NaN.

template <class T>
bool isnormal(T t);

Returns true only if \( z \) is a normal number (not zero, infinite, NaN, or denormalised).

**Sign Manipulation Functions**

**Synopsis**

```cpp
#include <boost/math/special_functions/sign.hpp>

namespace boost { namespace math {

template <class T>
int signbit(T x);

template <class T>
inline int sign(const T& z);

template <class T>
inline T copysign(const T& x, const T& y);

}} // namespaces
```

**Description**

```cpp
template <class T>
int signbit(T x);
```

Returns a non-zero value if the sign bit is set in variable \( x \), otherwise 0.

```cpp
template <class T>
inline int sign(const T& z);
```

Returns 1 if \( x > 0 \), -1 if \( x < 0 \), and 0 if \( x \) is zero.

```cpp
template <class T>
inline T copysign(const T& x, const T& y);
```

Sets the sign of \( x \) to be the same as the sign of \( y \).

**Floating-Point Representation Distance (ULP), and Finding Adjacent Floating-Point Values**

*Unit of Least Precision or Unit in the Last Place* is the gap between two different, but as close as possible, floating-point numbers.

Most decimal values, for example 0.1, cannot be exactly represented as floating-point values, but will be stored as the closest representable floating-point.
Functions are provided for finding adjacent greater and lesser floating-point values, and estimating the number of gaps between any two floating-point values.

The floating-point type FPT must have has a fixed number of bits in the representation. The number of bits may set at runtime, but must be the same for all numbers. For example, NTL::quad_float type (fixed 128-bit representation) or NTL::RR type (arbitrary but fixed decimal digits, default 150) but not a type that extends the representation to provide an exact representation for any number, for example XRC eXact Real in C.

**Finding the Next Representable Value in a Specific Direction (nextafter)**

**Synopsis**

```cpp
#include <boost/math/special_functions/next.hpp>
namespace boost { namespace math {
 template <class FPT>
 FPT nextafter(FPT val, FPT direction);
}} // namespaces
```

**Description - nextafter**

This is an implementation of the `nextafter` function included in the C99 standard. (It is also effectively an implementation of the C99 'nexttoward' legacy function which differs only having a long double direction, and can generally serve in its place if required).

**Note**

The C99 functions must use suffixes f and l to distinguish float and long double versions. C++ uses the template mechanism instead.

Returns the next representable value after \( x \) in the direction of \( y \). If \( x = \pm \infty \) then returns \( x \). If \( x \) is non-finite then returns the result of a domain_error. If there is no such value in the direction of \( y \) then returns an overflow_error.

**Examples - nextafter**

The two representations using a 32-bit float either side of unity are:
The nearest (exact) representation of 1.F is 1.00000000
nextafter(1.F, 999) is 1.00000012
nextafter(1/f, -999) is 0.99999994

The nearest (not exact) representation of 0.1F is 0.100000001
nextafter(0.1F, 10) is 0.100000009
nextafter(0.1F, 10) is 0.099999994

Finding the Next Greater Representable Value (float_next)

Synopsis

```cpp
#include <boost/math/special_functions/next.hpp>

namespace boost { namespace math {

template <class FPT>
FPT float_next(FPT val);

}} // namespaces
```

Description - float_next

Returns the next representable value which is greater than \( x \). If \( x \) is non-finite then returns the result of a domain_error. If there is no such value greater than \( x \) then returns an overflow_error.

Has the same effect as

```cpp
nextafter(val, std::numeric_limits<FPT>::max());
```

Finding the Next Smaller Representable Value (float_prior)

Synopsis

```cpp
#include <boost/math/special_functions/next.hpp>

namespace boost { namespace math {

template <class FPT>
FPT float_prior(FPT val);

}} // namespaces
```

Description - float_prior

Returns the next representable value which is less than \( x \). If \( x \) is non-finite then returns the result of a domain_error. If there is no such value less than \( x \) then returns an overflow_error.

Has the same effect as
Calculating the Representation Distance Between Two Floating Point Values (ULP) float_distance

Function float_distance finds the number of gaps/bits/ULP between any two floating-point values. If the significands of floating-point numbers are viewed as integers, then their difference is the number of ULP/gaps/bits different.

Synopsis

```cpp
#include <boost/math/special_functions/next.hpp>

namespace boost { namespace math {

template <class FPT>
FPT float_distance(FPT a, FPT b);

}} // namespaces
```

Description - float_distance

Returns the distance between \(a\) and \(b\): the result is always a signed integer value (stored in floating-point type FPT) representing the number of distinct representations between \(a\) and \(b\).

Note that

- \(\text{float_distance}(a, a)\) always returns 0.
- \(\text{float_distance}(\text{float_next}(a), a)\) always returns 1.
- \(\text{float_distance}(\text{float_prior}(a), a)\) always returns -1.

The function float_distance is equivalent to calculating the number of ULP (Units in the Last Place) between \(a\) and \(b\) except that it returns a signed value indicating whether \(a > b\) or not.

If the distance is too great then it may not be able to be represented as an exact integer by type FPT, but in practice this is unlikely to be an issue.

Advancing a Floating Point Value by a Specific Representation Distance (ULP) float_advance

Function float_advance advances a floating point number by a specified number of ULP.
Synopsis

```cpp
#include <boost/math/special_functions/next.hpp>

namespace boost{ namespace math{

template <class FPT>
FPT float_advance(FPT val, int distance);

}} // namespaces
```

Description - float_advance

Returns a floating point number \( r \) such that \( \text{float_distance}(val, r) == \text{distance} \).

**TR1 and C99 external "C" Functions**

**C99 and TR1 C Functions Overview**

Many of the special functions included in this library are also a part of the either the [C99 Standard ISO/IEC 9899:1999](https://www.iso.org/standard/41376.html) or the [Technical Report on C++ Library Extensions](https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3500.html). Therefore this library includes a thin wrapper header `boost/math/tr1.hpp` that provides compatibility with these two standards.

There are various pros and cons to using the library in this way:

**Pros:**

- The header to include is lightweight (i.e. fast to compile).
- The functions have extern "C" linkage, and so are usable from other languages (not just C and C++).
- C99 and C++ TR1 Standard compatibility.

**Cons:**

- You will need to compile and link to the external Boost.Math libraries.
- Limited to support for the types, `float`, `double` and `long double`.
- Error handling is handled via setting `::errno` and returning NaN's and infinities: this may be less flexible than an C++ exception based approach.

**Note**

The separate libraries are required **only** if you choose to use `boost/math/tr1.hpp` rather than some other Boost.Math header, the rest of Boost.Math remains header-only.

The separate libraries required in order to use `tr1.hpp` can be compiled using bjam from within the `libs/math/build` directory, or from the Boost root directory using the usual Boost-wide install procedure. Alternatively the source files are located in `libs/math/src` and each have the same name as the function they implement. The various libraries are named as follows:
### C99 Functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>boost_math_c99f-&lt;suffix&gt;</td>
<td>float</td>
<td>C99 Functions</td>
</tr>
<tr>
<td>boost_math_c99d-&lt;suffix&gt;</td>
<td>double</td>
<td>C99 Functions</td>
</tr>
<tr>
<td>boost_math_c99l-&lt;suffix&gt;</td>
<td>long double</td>
<td>C99 Functions</td>
</tr>
</tbody>
</table>

### TR1 Functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>boost_math_tr1f-&lt;suffix&gt;</td>
<td>float</td>
<td>TR1 Functions</td>
</tr>
<tr>
<td>boost_math_tr1d-&lt;suffix&gt;</td>
<td>double</td>
<td>TR1 Functions</td>
</tr>
<tr>
<td>boost_math_tr1l-&lt;suffix&gt;</td>
<td>long double</td>
<td>TR1 Functions</td>
</tr>
</tbody>
</table>

Where `<suffix>` encodes the compiler and build options used to build the libraries: for example "libboost_math_tr1-vc80-mt-gd.lib" would be the statically linked TR1 library to use with Visual C++ 8.0, in multithreading debug mode, with the DLL VC++ runtime, where as "boost_math_tr1-vc80-mt.lib" would be import library for the TR1 DLL to be used with Visual C++ 8.0 with the release multithreaded DLL VC++ runtime. Refer to the getting started guide for a full explanation of the `<suffix>` meanings.

**Note**

Visual C++ users will typically have the correct library variant to link against selected for them by boost/math/tr1.hpp based on your compiler settings.

Users will need to define BOOST_MATH_TR1_DYN_LINK when building their code if they want to link against the DLL versions of these libraries rather than the static versions.

Users can disable auto-linking by defining BOOST_MATH_TR1_NO_LIB when building: this is typically only used when linking against a customised build of the libraries.

**Note**

Linux and Unix users will generally only have one variant of these libraries installed, and can generally just link against -lboost_math_tr1 etc.

### Usage Recommendations

This library now presents the user with a choice:

- To include the header only versions of the functions and have an easier time linking, but a longer compile time.
- To include the TR1 headers and link against an external library.

Which option you choose depends largely on how you prefer to work and how your system is set up.

For example a casual user who just needs the acosh function, would probably be better off including `<boost/math/special_functions/acosh.hpp>` and using `boost::math::acosh(x)` in their code.

However, for large scale software development where compile times are significant, and where the Boost libraries are already built and installed on the system, then including `<boost/math/tr1.hpp>` and using `boost::math::tr1::acosh(x)` will speed up compile times, reduce object files sizes (since there are no templates being instantiated any more), and also speed up debugging runtimes - since the externally compiled libraries can be compiler optimised, rather than built using full settings - the difference in performance between release and debug builds can be as much as 20 times, so for complex applications this can be a big win.
Supported C99 Functions

See also the quick reference guide for these functions.

```cpp
namespace boost { namespace math { namespace tr1 { extern "C" {

typedef unspecified float_t;
typedef unspecified double_t;

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

double erf(double x);
float erff(float x);
long double erfll(long double x);

double erfc(double x);
float erfcf(float x);
long double erfcfl(long double x);

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

double log1p(double x);
float log1pf(float x);
```
long double log1pl(long double x);
long lround(double x);
long lroundf(float x);
long lroundl(long double x);

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

double round(double x);
float roundf(float x);
long double roundl(long double x);

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

}}}} // namespaces

**Supported TR1 Functions**

See also the quick reference guide for these functions.
namespace boost{ namespace math{ namespace tr1{ extern "C"{

// [5.2.1.1] associated Laguerre polynomials:
double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

// [5.2.1.2] associated Legendre functions:
double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

// [5.2.1.3] beta function:
double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);

// [5.2.1.4] (complete) elliptic integral of the first kind:
double comp_ellint_1(double k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);

// [5.2.1.5] (complete) elliptic integral of the second kind:
double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);

// [5.2.1.6] (complete) elliptic integral of the third kind:
double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);

// [5.2.1.8] regular modified cylindrical Bessel functions:
double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);

// [5.2.1.9] cylindrical Bessel functions (of the first kind):
double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);

// [5.2.1.10] irregular modified cylindrical Bessel functions:
double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

// [5.2.1.11] cylindrical Neumann functions;
// cylindrical Bessel functions (of the second kind):
double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

// [5.2.1.12] (incomplete) elliptic integral of the first kind:
double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);

// [5.2.1.13] (incomplete) elliptic integral of the second kind:
double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);

}}}}}
In addition sufficient additional overloads of the double versions of the above functions are provided, so that calling the function with any mixture of float, double, long double, or integer arguments is supported, with the return type determined by the result type calculation rules.
Currently Unsupported C99 Functions

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

long long lrint(double x);
long long lrintf(float x);
long long lrintl(long double x);

double log2(double x);
float log2f(float x);
long double log2l(long double x);

double logb(double x);
float logbf(float x);
long double logbl(long double x);

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

double nan(const char *str);
float nanf(const char *str);
long double nanl(const char *str);

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

double remquo(double x, double y, int *pquo);
float remquof(float x, float y, int *pquo);
long double remquol(long double x, long double y, int *pquo);

double rint(double x);
float rintf(float x);
long double rintl(long double x);

double scalbln(double x, long ex);
float scalblnf(float x, long ex);
long double scalblnl(long double x, long ex);

double scalbn(double x, int ex);
float scalbnf(float x, int ex);
long double scalbnl(long double x, int ex);

Currently Unsupported TR1 Functions

// [5.2.1.7] confluent hypergeometric functions:
double conf_hyperg(double a, double c, double x);
float conf_hypergf(float a, float c, float x);
long double conf_hypergl(long double a, long double c, long double x);

// [5.2.1.17] hypergeometric functions:
double hyperg(double a, double b, double c, double x);
float hypergf(float a, float b, float c, float x);
long double hypergl(long double a, long double b, long double c,
long double x);

C99 C Functions

Supported C99 Functions

namespace boost{ namespace math{ namespace tr1{ extern "C"{

typedef unspecified float_t;
typedef unspecified double_t;

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

double cbrt(double x);
float cbrtf(float x);
long double cbttl(long double x);

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

double erf(double x);
float erff(float x);
long double erfl(long double x);

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

double round(double x);
float roundf(float x);
long double roundl(long double x);

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

}}} // namespaces

In addition sufficient additional overloads of the double versions of the above functions are provided, so that calling the function with any mixture of float, double, long double, or integer arguments is supported, with the return type determined by the result type calculation rules.

For example:
acoshf(2.0f); // float version, returns float.
acosh(2.0f); // also calls the float version and returns float.
acosh(2.0); // double version, returns double.
acoshl(2.0L); // long double version, returns a long double.
acosh(2.0L); // also calls the long double version.
acosh(2); // integer argument is treated as a double, returns double.

Quick Reference

More detailed descriptions of these functions are available in the C99 standard.

typedef unspecified float_t;
typedef unspecified double_t;

In this implementation float_t is the same as type float, and double_t the same as type double unless the preprocessor symbol FLT_EVAL_METHOD is defined, in which case these are set as follows:

<table>
<thead>
<tr>
<th>FLT_EVAL_METHOD</th>
<th>float_t</th>
<th>double_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>float</td>
<td>double</td>
</tr>
<tr>
<td>1</td>
<td>double</td>
<td>double</td>
</tr>
<tr>
<td>2</td>
<td>long double</td>
<td>long double</td>
</tr>
</tbody>
</table>

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

Returns the inverse hyperbolic cosine of x.

See also acosh for the full template (header only) version of this function.

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

Returns the inverse hyperbolic sine of x.

See also asinh for the full template (header only) version of this function.

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

Returns the inverse hyperbolic tangent of x.

See also atanh for the full template (header only) version of this function.

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

Returns the cubed root of x.
See also [cbrt](#) for the full template (header only) version of this function.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>double copysign(double x, double y);</code></td>
<td></td>
</tr>
<tr>
<td><code>float copysignf(float x, float y);</code></td>
<td>Returns a value with the magnitude of x and the sign of y.</td>
</tr>
<tr>
<td><code>long double copysignl(long double x, long double y);</code></td>
<td></td>
</tr>
<tr>
<td><code>double erf(double x);</code></td>
<td>Returns the error function of x:</td>
</tr>
<tr>
<td><code>float erff(float x);</code></td>
<td></td>
</tr>
<tr>
<td><code>long double erfl(long double x);</code></td>
<td></td>
</tr>
<tr>
<td><code>erf(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt</code></td>
<td></td>
</tr>
<tr>
<td><code>double erfc(double x);</code></td>
<td>Returns the complementary error function of x without the loss of precision implied by the subtraction.</td>
</tr>
<tr>
<td><code>float erfcf(float x);</code></td>
<td></td>
</tr>
<tr>
<td><code>long double erfcfl(long double x);</code></td>
<td></td>
</tr>
<tr>
<td><code>double erfc(double x);</code></td>
<td>Returns the complementary error function of x without the loss of precision implied by the subtraction.</td>
</tr>
<tr>
<td><code>float erfcf(float x);</code></td>
<td></td>
</tr>
<tr>
<td><code>long double erfcfl(long double x);</code></td>
<td></td>
</tr>
<tr>
<td><code>double expm1(double x);</code></td>
<td>Returns (\exp(x)-1) without the loss of precision implied by the subtraction.</td>
</tr>
<tr>
<td><code>float expm1f(float x);</code></td>
<td></td>
</tr>
<tr>
<td><code>long double expm1l(long double x);</code></td>
<td></td>
</tr>
<tr>
<td><code>double fmax(double x, double y);</code></td>
<td>Returns the larger (most positive) of x and y.</td>
</tr>
<tr>
<td><code>float fmaxf(float x, float y);</code></td>
<td></td>
</tr>
<tr>
<td><code>long double fmaxl(long double x, long double y);</code></td>
<td></td>
</tr>
<tr>
<td><code>double fmin(double x, double y);</code></td>
<td>Returns the smaller (most negative) of x and y.</td>
</tr>
<tr>
<td><code>float fminf(float x, float y);</code></td>
<td></td>
</tr>
<tr>
<td><code>long double fminl(long double x, long double y);</code></td>
<td></td>
</tr>
<tr>
<td><code>double hypot(double x, double y);</code></td>
<td>Returns (\sqrt{x^2 + y^2}) without the danger of numeric overflow implied by that formulation.</td>
</tr>
<tr>
<td><code>float hypotf(float x, float y);</code></td>
<td></td>
</tr>
<tr>
<td><code>long double hypotl(long double x, long double y);</code></td>
<td></td>
</tr>
</tbody>
</table>
double lgamma(double x);
floating lgammaf(float x);
long double lgammal(long double x);

Returns the log of the gamma function of \( x \).

\[
\text{lgamma}(z) = \ln | \Gamma(z) |
\]

See also \texttt{lgamma} for the full template (header only) version of this function.

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

Returns the value \( x \) rounded to the nearest integer as a \texttt{long long}: equivalent to \texttt{floor(x + 0.5)}

See also \texttt{round} for the full template (header only) version of this function.

double log1p(double x);
floating log1pf(float x);
long double log1pl(long double x);

Returns the \( \log(x+1) \) without the loss of precision implied by that formulation.

See also \texttt{log1p} for the full template (header only) version of this function.

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

Returns the value \( x \) rounded to the nearest integer as a \texttt{long}: equivalent to \texttt{floor(x + 0.5)}

See also \texttt{round} for the full template (header only) version of this function.

double nextafter(double x, double y);
floating nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

Returns the next representable floating point number after \( x \) in the direction of \( y \), or \( x \) if \( x == y \).

As \texttt{nextafter}, but with \( y \) always expressed as a \texttt{long double}.

double round(double x);
floating roundf(float x);
long double roundl(long double x);

Returns the value \( x \) rounded to the nearest integer: equivalent to \texttt{floor(x + 0.5)}

See also \texttt{round} for the full template (header only) version of this function.
double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

Returns the gamma function of \( x \):

\[
tgamma(z) = \Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt
\]

See also \texttt{tgamma} for the full template (header only) version of this function.

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

Returns \( x \) truncated to the nearest integer.

See also \texttt{trunc} for the full template (header only) version of this function.

See also C99 ISO Standard
namespace boost::namespace math::namespace tr1{ extern "C"

// [5.2.1.1] associated Laguerre polynomials:
double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

// [5.2.1.2] associated Legendre functions:
double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

// [5.2.1.3] beta function:
double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);

// [5.2.1.4] (complete) elliptic integral of the first kind:
double comp_ellint_1(double k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);

// [5.2.1.5] (complete) elliptic integral of the second kind:
double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);

// [5.2.1.6] (complete) elliptic integral of the third kind:
double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);

// [5.2.1.8] regular modified cylindrical Bessel functions:
double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);

// [5.2.1.9] cylindrical Bessel functions (of the first kind):
double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);

// [5.2.1.10] irregular modified cylindrical Bessel functions:
double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

// [5.2.1.11] cylindrical Neumann functions;
// cylindrical Bessel functions (of the second kind):
double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

// [5.2.1.12] (incomplete) elliptic integral of the first kind:
double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);
// [5.2.1.13] (incomplete) elliptic integral of the second kind:
double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);

// [5.2.1.14] (incomplete) elliptic integral of the third kind:
double ellint_3(double k, double nu, double phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);

// [5.2.1.15] exponential integral:
double expint(double x);
float expintf(float x);
long double expintl(long double x);

// [5.2.1.16] Hermite polynomials:
double hermite(unsigned n, double x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);

// [5.2.1.18] Laguerre polynomials:
double laguerre(unsigned n, double x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);

// [5.2.1.19] Legendre polynomials:
double legendre(unsigned l, double x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);

// [5.2.1.20] Riemann zeta function:
double riemann_zeta(double);
float riemann_zetaf(float);
long double riemann_zetal(long double);

// [5.2.1.21] spherical Bessel functions (of the first kind):
double sph_bessel(unsigned n, double x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);

// [5.2.1.22] spherical associated Legendre functions:
double sph_legendre(unsigned l, unsigned m, double theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);

// [5.2.1.23] spherical Neumann functions;
// spherical Bessel functions (of the second kind):
double sph_neumann(unsigned n, double x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);

}}} // namespaces

In addition sufficient additional overloads of the double versions of the above functions are provided, so that calling the function with any mixture of float, double, long double, or integer arguments is supported, with the return type determined by the result type calculation rules.

For example:
expintf(2.0f); // float version, returns float.
expint(2.0f); // also calls the float version and returns float.
expint(2.0); // double version, returns double.
expintl(2.0L); // long double version, returns a long double.
expint(2.0L); // also calls the long double version.
expint(2); // integer argument is treated as a double, returns double.

Quick Reference

// [5.2.1.1] associated Laguerre polynomials:
double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

The assoc_laguerre functions return:
laguerre(n, m, x) = L^m_n(x) = (-1)^m \frac{d^m}{dx^m} L_{n+m}(x)

See also laguerre for the full template (header only) version of this function.

// [5.2.1.2] associated Legendre functions:
double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

The assoc_legendre functions return:
legendre_p(l, m, x) = P^m_l(x) = (1 - x^2)^{m/2} d^m d x^m P_l(x)

See also legendre_p for the full template (header only) version of this function.

// [5.2.1.3] beta function:
double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);

Returns the beta function of x and y:
\beta(a, b) = B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}

See also beta for the full template (header only) version of this function.

// [5.2.1.4] (complete) elliptic integral of the first kind:
double comp_ellint_1(double k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);

Returns the complete elliptic integral of the first kind of k:
K(k) = F(\frac{\pi}{2}, k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2\sin^2\theta}}
See also `ellint_1` for the full template (header only) version of this function.

```
// [5.2.1.5] (complete) elliptic integral of the second kind:
double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);
```

Returns the complete elliptic integral of the second kind of \( k \):

\[
E(k) = E\left(\frac{\pi}{2}, k\right) = \int_0^\frac{\pi}{2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}
\]

See also `ellint_2` for the full template (header only) version of this function.

```
// [5.2.1.6] (complete) elliptic integral of the third kind:
double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);
```

Returns the complete elliptic integral of the third kind of \( k \) and \( nu \):

\[
\prod(n, k) = \prod(n, \frac{\pi}{2}, k) = \int_0^\frac{\pi}{2} \frac{d\theta}{(1 - nu^2 \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta}}
\]

See also `ellint_3` for the full template (header only) version of this function.

```
// [5.2.1.8] regular modified cylindrical Bessel functions:
double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);
```

Returns the modified bessel function of the first kind of \( nu \) and \( x \):

\[
I_v(z) = \left(\frac{1}{2z}\right)^v \sum_{k=0}^{\infty} \frac{\left(\frac{1}{4}z^2\right)^k}{k!(v+k+1)}
\]

See also `cyl_bessel_i` for the full template (header only) version of this function.

```
// [5.2.1.9] cylindrical Bessel functions (of the first kind):
double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_besseljl(long double nu, long double x);
```

Returns the bessel function of the first kind of \( nu \) and \( x \):

\[
J_v(z) = \left(\frac{1}{2z}\right)^v \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}z^2\right)^k}{k!(v+k+1)}
\]

See also `cyl_bessel_j` for the full template (header only) version of this function.
// [5.2.1.10] irregular modified cylindrical Bessel functions:
double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

Returns the modified bessel function of the second kind of \( n_u \) and \( x \):

\[
K_n(u) = \frac{\pi}{2} \cdot \frac{I_{-\nu}(z) - I_{\nu}(z)}{\sin (\nu \pi)}
\]

See also cyl_bessel_k for the full template (header only) version of this function.

// [5.2.1.11] cylindrical Neumann functions;
// cylindrical Bessel functions (of the second kind):
double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

Returns the bessel function of the second kind (Neumann function) of \( n_u \) and \( x \):

\[
Y_n(z) = J_{n}(z) \cos (\nu \pi) - J_{-n}(z) \sin (\nu \pi)
\]

See also cyl_neumann for the full template (header only) version of this function.

// [5.2.1.12] (incomplete) elliptic integral of the first kind:
double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);

Returns the incomplete elliptic integral of the first kind of \( k \) and \( \phi \):

\[
F(\phi, k) = \int_{0}^{\phi} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}
\]

See also ellint_1 for the full template (header only) version of this function.

// [5.2.1.13] (incomplete) elliptic integral of the second kind:
double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);

Returns the incomplete elliptic integral of the second kind of \( k \) and \( \phi \):

\[
E(\phi, k) = \int_{0}^{\phi} \sqrt{1 - k^2 \sin^2 \theta} d\theta
\]

See also ellint_2 for the full template (header only) version of this function.

// [5.2.1.14] (incomplete) elliptic integral of the third kind:
double ellint_3(double k, double nu, double phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);

Returns the incomplete elliptic integral of the third kind of \( k, n_u \) and \( \phi \):
\[ \Pi(n, \varphi, k) = \int_{0}^{\varphi} \frac{d\theta}{(1 - n \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta}} \]

See also \texttt{ellint\_3} for the full template (header only) version of this function.

\begin{verbatim}
// [5.2.1.15] exponential integral:
double expint(double x);
float expintf(float x);
long double expintl(long double x);
\end{verbatim}

Returns the exponential integral \( E_1(x) \):

\[ Ei(x) = -E_1(-x) = \int_{x}^{\infty} \frac{e^{-t}}{t} dt \]

See also \texttt{expint} for the full template (header only) version of this function.

\begin{verbatim}
// [5.2.1.16] Hermite polynomials:
double hermite(unsigned n, double x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);
\end{verbatim}

Returns the \( n \)'th Hermite polynomial of \( x \):

\[ \text{hermite}(x) = H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} \]

See also \texttt{hermite} for the full template (header only) version of this function.

\begin{verbatim}
// [5.2.1.18] Laguerre polynomials:
double laguerre(unsigned n, double x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);
\end{verbatim}

Returns the \( n \)'th Laguerre polynomial of \( x \):

\[ \text{laguerre}(n, x) = L_n(x) = e^{x} \frac{d^n}{dx^n} (x^n e^{-x}) \]

See also \texttt{laguerre} for the full template (header only) version of this function.

\begin{verbatim}
// [5.2.1.19] Legendre polynomials:
double legendre(unsigned l, double x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);
\end{verbatim}

Returns the \( l \)'th Legendre polynomial of \( x \):

\[ \text{legendre\_p}(l, x) = P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l ; \quad |x| \leq 1 \]

See also \texttt{legendre\_p} for the full template (header only) version of this function.
/ [5.2.1.20] Riemann zeta function:
double riemann_zeta(double);
float riemann_zetaf(float);
long double riemann_zetal(long double);

Returns the Riemann Zeta function of x:

\[
\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}
\]

See also zeta for the full template (header only) version of this function.

/ [5.2.1.21] spherical Bessel functions (of the first kind):
double sph_bessel(unsigned n, double x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);

Returns the spherical Bessel function of the first kind of x \(j_n(x)\):

\[
j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n+\frac{1}{2}}(z)
\]

\[
y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n+\frac{1}{2}}(z)
\]

See also sph_bessel for the full template (header only) version of this function.

/ [5.2.1.22] spherical associated Legendre functions:
double sph_legendre(unsigned l, unsigned m, double theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);

Returns the spherical associated Legendre function of \(l, m\) and \(\theta\):

\[
sph\_legendre(l, m, \theta) = Y_l^m(\theta, 0) = (-1)^m \sqrt{\frac{2l + 1}{4\pi} \frac{(l - m)!}{(l + m)!}} P_l^m(\cos \theta)
\]

See also spherical_harmonic for the full template (header only) version of this function.

/ [5.2.1.23] spherical Neumann functions;
// spherical Bessel functions (of the second kind):
double sph_neumann(unsigned n, double x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);

Returns the spherical Neumann function of x \(y_n(x)\):

\[
j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n+\frac{1}{2}}(z)
\]

\[
y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n+\frac{1}{2}}(z)
\]

See also sph_bessel for the full template (header only) version of this function.
Currently Unsupported TR1 Functions

```c
// [5.2.1.7] confluent hypergeometric functions:
double conf_hyperg(double a, double c, double x);
float conf_hypergf(float a, float c, float x);
long double conf_hypergl(long double a, long double c, long double x);

// [5.2.1.17] hypergeometric functions:
double hyperg(double a, double b, double c, double x);
float hypergf(float a, float b, float c, float x);
long double hypergl(long double a, long double b, long double c, long double x);
```

**Note**
These two functions are not implemented as they are not believed to be numerically stable.

Internal Details and Tools (Experimental)

**Overview**

This section contains internal utilities used by the library's implementation along with tools used in development and testing. These tools have only minimal documentation, and crucially do not have stable interfaces.

There is no doubt that these components can be improved, but they are also largely incidental to the main purpose of this library.

These tools are designed to "just get the job done", and receive minimal documentation here, in the hopes that they will help stimulate further submissions to this library.
Reused Utilities

Numeric Constants

Synopsis

```cpp
#include <boost/math/constants/constants.hpp>
namespace boost { namespace math { namespace constants {
 template <class T> T pi();
 template <class T> T root_pi();
 template <class T> T root_half_pi();
 template <class T> T root_two_pi();
 template <class T> T root_ln_four();
 template <class T> T e();
 template <class T> T half();
 template <class T> T euler();
 template <class T> T root_two();
 template <class T> T ln_two();
 template <class T> T ln_ln_two();
 template <class T> T third();
 template <class T> T twothirds();
 template <class T> T pi_minus_three();
 template <class T> T four_minus_pi();
}} // namespaces
```

Description

The header `boost/math/constants/constants.hpp` contains some numeric constants that we have found useful in the development of this library. New constants are added on an ad-hock basis based on need.

Usage is like this:

```cpp
template <class T>
T circumference(T r)
{
 return 2 * boost::math::constants::pi<T>() * r;
}
```

All the constants are accurate to at least the 34 decimal digits required for 128-bit long doubles, and most are accurate to 100 digits or more when used with a suitable arbitrary precision type.

The following table summarises the constants we have at present:
<table>
<thead>
<tr>
<th>Constant</th>
<th>Meaning</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pi</td>
<td>π</td>
<td>3.1415926535897932384...</td>
</tr>
<tr>
<td>root_pi</td>
<td>√π</td>
<td>1.772453850905516027...</td>
</tr>
<tr>
<td>root_half_pi</td>
<td>√(π/2)</td>
<td>1.253314137315500251...</td>
</tr>
<tr>
<td>root_two_pi</td>
<td>√(2*π)</td>
<td>2.506628274631000502...</td>
</tr>
<tr>
<td>root_ln_four</td>
<td>√(ln(4))</td>
<td>1.17741002251547469...</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>2.71828182845904523536...</td>
</tr>
<tr>
<td>half</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>euler</td>
<td>Euler's constant</td>
<td>0.577215664901532860606</td>
</tr>
<tr>
<td>root_two</td>
<td>√2</td>
<td>1.4142135623730950488...</td>
</tr>
<tr>
<td>ln_two</td>
<td>ln(2)</td>
<td>0.6931471805599453094...</td>
</tr>
<tr>
<td>ln_ln_two</td>
<td>ln(ln(2))</td>
<td>-0.3665129205816643...</td>
</tr>
<tr>
<td>third</td>
<td>1/3</td>
<td>0.33333333333333333333...</td>
</tr>
<tr>
<td>twothirds</td>
<td>2/3</td>
<td>0.66666666666666666666...</td>
</tr>
<tr>
<td>pi_minus_three</td>
<td>π-3</td>
<td>0.14159265358979323846...</td>
</tr>
<tr>
<td>four_minus_pi</td>
<td>4-π</td>
<td>0.85840734641020676153735...</td>
</tr>
</tbody>
</table>
Series Evaluation

Synopsis

```cpp
#include <boost/math/tools/series.hpp>

namespace boost{ namespace math{ namespace tools{

template <class Functor, class U, class V>
inline typename Functor::result_type sum_series(Functor& func, const U& tolerance, boost::uintmax_t& max_terms, const V& init_value);

template <class Functor, class U, class V>
inline typename Functor::result_type sum_series(Functor& func, const U& tolerance, boost::uintmax_t& max_terms);

// The following interfaces are now deprecated:

template <class Functor>
typename Functor::result_type sum_series(Functor& func, int bits);

template <class Functor>
typename Functor::result_type sum_series(Functor& func, int bits, boost::uintmax_t& max_terms);

template <class Functor, class U>
typename Functor::result_type sum_series(Functor& func, int bits, U init_value);

template <class Functor, class U>
typename Functor::result_type sum_series(Functor& func, int bits, boost::uintmax_t& max_terms, U init_value);

template <class Functor>
typename Functor::result_type kahan_sum_series(Functor& func, int bits);

template <class Functor>
typename Functor::result_type kahan_sum_series(Functor& func, int bits, boost::uintmax_t& max_terms);
}} // namespaces
```

Description

These algorithms are intended for the summation of infinite series.

Each of the algorithms takes a nullary-function object as the first argument: the function object will be repeatedly invoked to pull successive terms from the series being summed.

The second argument is the precision required, summation will stop when the next term is less than tolerance times the result. The deprecated versions of sum_series take an integer number of bits here - internally they just convert this to a tolerance and forward the call.

The third argument max_terms sets an upper limit on the number of terms of the series to evaluate. In addition, on exit the function will set max_terms to the actual number of terms of the series that were evaluated: this is particularly useful for profiling the convergence properties of a new series.

The final optional argument init_value is the initial value of the sum to which the terms of the series should be added. This is useful in two situations:
• Where the first value of the series has a different formula to successive terms. In this case the first value in the series can be passed as the last argument and the logic of the function object can then be simplified to return subsequent terms.

• Where the series is being added (or subtracted) from some other value: termination of the series will likely occur much more rapidly if that other value is passed as the last argument. For example, there are several functions that can be expressed as \( I \cdot S(z) \) where \( S(z) \) is an infinite series. In this case, pass -1 as the last argument and then negate the result of the summation to get the result of \( I \cdot S(z) \).

The two `kahan_sum_series` variants of these algorithms maintain a carry term that corrects for roundoff error during summation. They are inspired by the Kahan Summation Formula that appears in *What Every Computer Scientist Should Know About Floating-Point Arithmetic*. However, it should be pointed out that there are very few series that require summation in this way.

**Example**

Let’s suppose we want to implement \( \log(1+x) \) via its infinite series,

\[
\log(1 + x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}x^k}{k}
\]

We begin by writing a small function object to return successive terms of the series:

```cpp
template <class T>
struct log1p_series
{
 // we must define a result_type typedef:
 typedef T result_type;

 log1p_series(T x)
 : k(0), m_mult(-x), m_prod(-1){}

 T operator()()
 {
 // This is the function operator invoked by the summation
 // algorithm, the first call to this operator should return
 // the first term of the series, the second call the second
 // term and so on.
 m_prod *= m_mult;
 return m_prod / ++k;
 }

 private:
 int k;
 const T m_mult;
 T m_prod;
};
```

Implementing \( \log(1+x) \) is now fairly trivial:
template <class T>
T log1p(T x)
{
    // We really should add some error checking on x here!
    assert(std::fabs(x) < 1);

    // Construct the series functor:
    log1p_series<T> s(x);
    // Set a limit on how many iterations we permit:
    boost::uintmax_t max_iter = 1000;
    // Add it up, with enough precision for full machine precision:
    return tools::sum_series(s, std::numeric_limits<T>::epsilon(), max_iter);
}

Continued Fraction Evaluation

Synopsis

#include <boost/math/tools/fraction.hpp>

namespace boost{ namespace math{ namespace tools{

namespace boost{ namespace math{ namespace tools{

typedef detail::fraction_traits<Gen>::result_type
    continued_fraction_b(Gen& g, const U& tolerance, boost::uintmax_t& max_terms)

typedef detail::fraction_traits<Gen>::result_type
    continued_fraction_b(Gen& g, const U& tolerance)

typedef detail::fraction_traits<Gen>::result_type
    continued_fraction_a(Gen& g, const U& tolerance, boost::uintmax_t& max_terms)

typedef detail::fraction_traits<Gen>::result_type
    continued_fraction_a(Gen& g, const U& tolerance)

    // These interfaces are present for legacy reasons, and are now deprecated:
    //
    template <class Gen>
    typename detail::fraction_traits<Gen>::result_type
        continued_fraction_b(Gen& g, int bits);

    template <class Gen>
    typename detail::fraction_traits<Gen>::result_type
        continued_fraction_b(Gen& g, int bits, boost::uintmax_t& max_terms);

    template <class Gen>
    typename detail::fraction_traits<Gen>::result_type
        continued_fraction_a(Gen& g, int bits);

    template <class Gen>
    typename detail::fraction_traits<Gen>::result_type
        continued_fraction_a(Gen& g, int bits, boost::uintmax_t& max_terms);

}}}} // namespaces

Description
Continued fractions are a common method of approximation. These functions all evaluate the continued fraction described by the generator type argument. The functions with an "_a" suffix evaluate the fraction:

\[
\frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \ldots}}}}
\]

and those with a "_b" suffix evaluate the fraction:

\[
\frac{b_0}{a_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \ldots}}}}
\]

This latter form is somewhat more natural in that it corresponds with the usual definition of a continued fraction, but note that the first \(a\) value returned by the generator is discarded. Further, often the first \(a\) and \(b\) values in a continued fraction have different defining equations to the remaining terms, which may make the "_a" suffixed form more appropriate.

The generator type should be a function object which supports the following operations:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen::result_type</td>
<td>The type that is the result of invoking operator(). This can be either an arithmetic type, or a std::pair&lt;&gt; of arithmetic types.</td>
</tr>
<tr>
<td>g()</td>
<td>Returns an object of type Gen::result_type. Each time this operator is called then the next pair of (a) and (b) values is returned. Or, if result_type is an arithmetic type, then the next (b) value is returned and all the (a) values are assumed to 1.</td>
</tr>
</tbody>
</table>

In all the continued fraction evaluation functions the tolerance parameter is the precision desired in the result, evaluation of the fraction will continue until the last term evaluated leaves the relative error in the result less than tolerance. The deprecated interfaces take a number of digits precision here, internally they just convert this to a tolerance and forward call.

If the optional max_terms parameter is specified then no more than max_terms calls to the generator will be made, and on output, max_terms will be set to actual number of calls made. This facility is particularly useful when profiling a continued fraction for convergence.

**Implementation**


**Examples**

The golden ratio \(\phi = 1.618033989\ldots\) can be computed from the simplest continued fraction of all:

\[
\text{Golden Ratio} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \ldots}}}
\]

We begin by defining a generator function:
```cpp
template <class T>
struct golden_ratio_fraction
{
 typedef T result_type;

 result_type operator()
 {
 return 1;
 }
};
```

The golden ratio can then be computed to double precision using:

```cpp
continued_fraction_a(
 golden_ratio_fraction<double>(),
 std::numeric_limits<double>::epsilon());
```

It's more usual though to have to define both the $a$'s and the $b$'s when evaluating special functions by continued fractions, for example the tan function is defined by:

$$\tan(z) = \frac{z}{1 - \frac{z^2}{3 - \frac{z^2}{5 - \frac{z^2}{7 - \frac{z^2}{9 - \ldots}}}}}
$$

So it's generator object would look like:

```cpp
template <class T>
struct tan_fraction
{
 private:
 T a, b;
 public:
 tan_fraction(T v)
 : a(-v*v), b(-1)
 {}
 typedef std::pair<T,T> result_type;

 std::pair<T,T> operator()()
 {
 b += 2;
 return std::make_pair(a, b);
 }
};
```

Notice that if the continuant is subtracted from the $b$ terms, as is the case here, then all the $a$ terms returned by the generator will be negative. The tangent function can now be evaluated using:

```cpp
template <class T>
T tan(T a)
{
 tan_fraction<T> fract(a);
 return a / continued_fraction_b(fract, std::numeric_limits<T>::epsilon());
}
```

Notice that this time we're using the "_b" suffixed version to evaluate the fraction: we're removing the leading $a$ term during fraction evaluation as it's different from all the others.
Polynomial and Rational Function Evaluation

**synopsis**

```cpp
#include <boost/math/tools/rational.hpp>

// Polynomials:
template <std::size_t N, class T, class V>
V evaluate_polynomial(const T(&poly)[N], const V& val);

template <std::size_t N, class T, class V>
V evaluate_polynomial(const boost::array<T,N>& poly, const V& val);

template <class T, class U>
U evaluate_polynomial(const T* poly, U z, std::size_t count);

// Even polynomials:
template <std::size_t N, class T, class V>
V evaluate_even_polynomial(const T(&poly)[N], const V& z);

template <std::size_t N, class T, class V>
V evaluate_even_polynomial(const boost::array<T,N>& poly, const V& z);

template <class T, class U>
U evaluate_even_polynomial(const T* poly, U z, std::size_t count);

// Odd polynomials
template <std::size_t N, class T, class V>
V evaluate_odd_polynomial(const T(&a)[N], const V& z);

template <std::size_t N, class T, class V>
V evaluate_odd_polynomial(const boost::array<T,N>& a, const V& z);

template <class T, class U>
U evaluate_odd_polynomial(const T* poly, U z, std::size_t count);

// Rational Functions:
template <std::size_t N, class T, class V>
V evaluate_rational(const T(&a)[N], const T(&b)[N], const V& z);

template <std::size_t N, class T, class V>
V evaluate_rational(const boost::array<T,N>& a, const boost::array<T,N>& b, const V& z);

template <class T, class U, class V>
V evaluate_rational(const T* num, const U* denom, V z, unsigned count);
```

**Description**

Each of the functions come in three variants: a pair of overloaded functions where the order of the polynomial or rational function is evaluated at compile time, and an overload that accepts a runtime variable for the size of the coefficient array. Generally speaking, compile time evaluation of the array size results in better type safety, is less prone to programmer errors, and may result in better optimised code. The polynomial evaluation functions in particular, are specialised for various array sizes, allowing for loop unrolling, and one hopes, optimal inline expansion.
template <std::size_t N, class T, class V>
V evaluate_polynomial(const T(&poly)[N], const V& val);

template <std::size_t N, class T, class V>
V evaluate_polynomial(const boost::array<T,N>& poly, const V& val);

template <class T, class U>
U evaluate_polynomial(const T* poly, U z, std::size_t count);

Evaluates the polynomial described by the coefficients stored in poly.

If the size of the array is specified at runtime, then the polynomial must have order \textit{count-1} with \textit{count} coefficients. Otherwise it has order \textit{N-1} with \textit{N} coefficients.

Coefficients should be stored such that the coefficients for the $x^i$ terms are in \textit{poly[i]}.

The types of the coefficients and of variable \textit{z} may differ as long as *poly is convertible to type \textit{U}. This allows, for example, for the coefficient table to be a table of integers if this is appropriate.

template <std::size_t N, class T, class V>
V evaluate_even_polynomial(const T(&poly)[N], const V& z);

template <std::size_t N, class T, class V>
V evaluate_even_polynomial(const boost::array<T,N>& poly, const V& z);

template <class T, class U>
U evaluate_even_polynomial(const T* poly, U z, std::size_t count);

As above, but evaluates an even polynomial: one where all the powers of \textit{z} are even numbers. Equivalent to calling \textit{evaluate_polynomial(poly, z*z, count)}.

template <std::size_t N, class T, class V>
V evaluate_odd_polynomial(const T(&a)[N], const V& z);

template <std::size_t N, class T, class V>
V evaluate_odd_polynomial(const boost::array<T,N>& a, const V& z);

template <class T, class U>
U evaluate_odd_polynomial(const T* poly, U z, std::size_t count);

As above but evaluates a polynomial where all the powers are odd numbers. Equivalent to \textit{evaluate_polynomial(poly+1, z*z, count-1)} * \textit{z + poly[0]}.

template <std::size_t N, class T, class U, class V>
V evaluate_rational(const T(&num)[N], const U(&denom)[N], const V& z);

template <std::size_t N, class T, class U, class V>
V evaluate_rational(const boost::array<T,N>& num, const boost::array<U,N>& denom, const V& z);

template <class T, class U, class V>
V evaluate_rational(const T* num, const U* denom, V z, unsigned count);

Evaluates the rational function (the ratio of two polynomials) described by the coefficients stored in \textit{num} and \textit{denom}.

If the size of the array is specified at runtime then both polynomials must have order \textit{count-1} with \textit{count} coefficients. Otherwise both polynomials have order \textit{N-1} with \textit{N} coefficients.

Array \textit{num} describes the numerator, and \textit{denom} the denominator.
Coefficients should be stored such that the coefficients for the $x^i$ terms are in $\text{num}[i]$ and $\text{denom}[i]$.

The types of the coefficients and of variable $v$ may differ as long as $\ast\text{num}$ and $\ast\text{denom}$ are convertible to type $V$. This allows, for example, for one or both of the coefficient tables to be a table of integers if this is appropriate.

These functions are designed to safely evaluate the result, even when the value $z$ is very large. As such they do not take advantage of compile time array sizes to make any optimisations. These functions are best reserved for situations where $z$ may be large: if you can be sure that numerical overflow will not occur then polynomial evaluation with compile-time array sizes may offer slightly better performance.

**Implementation**

Polynomials are evaluated by Horners method. If the array size is known at compile time then the functions dispatch to size-specific implementations that unroll the evaluation loop.

Rational evaluation is by Horners method: with the two polynomials being evaluated in parallel to make the most of the processors floating-point pipeline. If $v$ is greater than one, then the polynomials are evaluated in reverse order as polynomials in $1/v$: this avoids unnecessary numerical overflow when the coefficients are large.

Both the polynomial and rational function evaluation algorithms can be tuned using various configuration macros to provide optimal performance for a particular combination of compiler and platform. This includes support for second-order Horner's methods. The various options are documented here. However, the performance benefits to be gained from these are marginal on most current hardware, consequently it's best to run the performance test application before changing the default settings.

**Root Finding With Derivatives**

**Synopsis**

```cpp
#include <boost/math/tools/roots.hpp>
namespace boost{ namespace math{ namespace tools{

template <class F, class T>
T newton_raphson_iterate(F f, T guess, T min, T max, int digits);

template <class F, class T>
T newton_raphson_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter);

template <class F, class T>
T halley_iterate(F f, T guess, T min, T max, int digits);

template <class F, class T>
T halley_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter);

template <class F, class T>
T schroeder_iterate(F f, T guess, T min, T max, int digits);

template <class F, class T>
T schroeder_iterate(F f, T guess, T min, T max, int digits, boost::uintmax_t& max_iter);
}} // namespaces
```

**Description**

These functions all perform iterative root finding: `newton_raphson_iterate` performs second order Newton Raphson iteration, while `halley_iterate` and `schroeder_iterate` perform third order Halley and Schroeder iteration respectively.

The functions all take the same parameters:
Parameters of the root finding functions

F f  Type F must be a callable function object that accepts one parameter and returns a tuple:

For the second order iterative methods (Newton Raphson) the tuple should have two elements containing the evaluation of the function and its first derivative.

For the third order methods (Halley and Schroeder) the tuple should have three elements containing the evaluation of the function and its first and second derivatives.

T guess  The initial starting value.

T min  The minimum possible value for the result, this is used as an initial lower bracket.

T max  The maximum possible value for the result, this is used as an initial upper bracket.

int digits  The desired number of binary digits.

uintmax_t max_iter  An optional maximum number of iterations to perform.

When using these functions you should note that:

• They may be very sensitive to the initial guess, typically they converge very rapidly if the initial guess has two or three decimal digits correct. However convergence can be no better than bisection, or in some rare cases even worse than bisection if the initial guess is a long way from the correct value and the derivatives are close to zero.

• These functions include special cases to handle zero first (and second where appropriate) derivatives, and fall back to bisection in this case. However, it is helpful if F is defined to return an arbitrarily small value of the correct sign rather than zero.

• If the derivative at the current best guess for the result is infinite (or very close to being infinite) then these functions may terminate prematurely. A large first derivative leads to a very small next step, triggering the termination condition. Derivative based iteration may not be appropriate in such cases.

• These functions fall back to bisection if the next computed step would take the next value out of bounds. The bounds are updated after each step to ensure this leads to convergence. However, a good initial guess backed up by asymptotically-tight bounds will improve performance no end rather than relying on bisection.

• The value of digits is crucial to good performance of these functions, if it is set too high then at best you will get one extra (unnecessary) iteration, and at worst the last few steps will proceed by bisection. Remember that the returned value can never be more accurate than f(x) can be evaluated, and that if f(x) suffers from cancellation errors as it tends to zero then the computed steps will be effectively random. The value of digits should be set so that iteration terminates before this point: remember that for second and third order methods the number of correct digits in the result is increasing quite substantially with each iteration, digits should be set by experiment so that the final iteration just takes the next value into the zone where f(x) becomes inaccurate.

• Finally: you may well be able to do better than these functions by hand-coding the heuristics used so that they are tailored to a specific function. You may also be able to compute the ratio of derivatives used by these methods more efficiently than computing the derivatives themselves. As ever, algebraic simplification can be a big win.

Newton Raphson Method

Given an initial guess x0 the subsequent values are computed using:

\[ x_{N+1} = x_N - \frac{f(x)}{f'(x)} \]

Out of bounds steps revert to bisection of the current bounds.

Under ideal conditions, the number of correct digits doubles with each iteration.
**Halley's Method**

Given an initial guess $x_0$ the subsequent values are computed using:

$$x_{N+1} = x_N - \frac{2f(x)f'(x)}{2(f'(x))^2 - f(x)f''(x)}$$

Over-compensation by the second derivative (one which would proceed in the wrong direction) causes the method to revert to a Newton-Raphson step.

Out of bounds steps revert to bisection of the current bounds.

Under ideal conditions, the number of correct digits trebles with each iteration.

**Schroeder's Method**

Given an initial guess $x_0$ the subsequent values are computed using:

$$x_{N+1} = x_N - \frac{f(x)}{f'(x)} - \frac{f''(x)(f(x))^2}{2(f'(x))^3}$$

Over-compensation by the second derivative (one which would proceed in the wrong direction) causes the method to revert to a Newton-Raphson step. Likewise a Newton step is used whenever that Newton step would change the next value by more than 10%.

Out of bounds steps revert to bisection of the current bounds.

Under ideal conditions, the number of correct digits trebles with each iteration.

**Example**

Let's suppose we want to find the cube root of a number, the equation we want to solve along with its derivatives are:

$$f(x) = x^3 - a$$
$$f'(x) = 3x^2$$
$$f''(x) = 6x$$

To begin with let's solve the problem using Newton Raphson iterations, we'll begin by defining a function object that returns the evaluation of the function to solve, along with its first derivative:

```cpp
template <class T>
struct cbart_function
{
 cbart_function(T const & target) : a(target) {};
 std::tr1::tuple<T, T> operator()(T const & z)
 {
 T sqr = z * z;
 return std::tr1::make_tuple(sqr * z - a, 3 * sqr);
 }
 private:
 T a;
};
```

Implementing the cube root is fairly trivial now, the hardest part is finding a good approximation to begin with: in this case we'll just divide the exponent by three:
template <class T>
T cbrt(T z)
{
  using namespace std;
  int exp;
  frexp(z, &exp);
  T min = ldexp(0.5, exp/3);
  T max = ldexp(2.0, exp/3);
  T guess = ldexp(1.0, exp/3);
  int digits = std::numeric_limits<T>::digits;
  return tools::newton_raphson_iterate(detail::cbrt_functor<T>(z), guess, min, max, digits);
}

Using the test data in libs/math/test/cbrt_test.cpp this found the cube root exact to the last digit in every case, and in no more than 6 iterations at double precision. However, you will note that a high precision was used in this example, exactly what was warned against earlier on in these docs! In this particular case its possible to compute f(x) exactly and without undue cancellation error, so a high limit is not too much of an issue. However, reducing the limit to std::numeric_limits<T>::digits * 2 / 3 gave full precision in all but one of the test cases (and that one was out by just one bit). The maximum number of iterations remained 6, but in most cases was reduced by one.

Note also that the above code omits error handling, and does not handle negative values of z correctly. That will be left as an exercise for the reader!

Now lets adapt the functor slightly to return the second derivative as well:

```cpp
template <class T>
struct cbrt_functor
{
 cbrt_functor(T const& target) : a(target){}

 std::tr1::tuple<T, T, T> operator()(T const& z)
 {
 T sqr = z * z;
 return std::tr1::make_tuple(sqr * z - a, 3 * sqr, 6 * z);
 }

private:
 T a;
};
```

And then adapt the cbrt function to use Halley iterations:

```cpp
template <class T>
T cbrt(T z)
{
 using namespace std;
 int exp;
 frexp(z, &exp);
 T min = ldexp(0.5, exp/3);
 T max = ldexp(2.0, exp/3);
 T guess = ldexp(1.0, exp/3);
 int digits = std::numeric_limits<T>::digits / 2;
 return tools::halley_iterate(detail::cbrt_functor<T>(z), guess, min, max, digits);
}
```

Note that the iterations are set to stop at just one-half of full precision, and yet even so not one of the test cases had a single bit wrong. What’s more, the maximum number of iterations was now just 4.

Just to complete the picture, we could have called schroeder_iterate in the last example: and in fact it makes no difference to the accuracy or number of iterations in this particular case. However, the relative performance of these two methods may vary depending upon the nature of f(x), and the accuracy to which the initial guess can be computed. There appear to be no generalisations that can be made except "try them and see".
Finally, had we called cbrt with NTL::RR set to 1000 bit precision, then full precision can be obtained with just 7 iterations. To put that in perspective an increase in precision by a factor of 20, has less than doubled the number of iterations. That just goes to emphasise that most of the iterations are used up getting the first few digits correct: after that these methods can churn out further digits with remarkable efficiency. Or to put it another way: *nothing beats a really good initial guess!*

**Root Finding Without Derivatives**

**Synopsis**

```cpp
#include <boost/math/tools/roots.hpp>

namespace boost { namespace math { namespace tools {

 template <class F, class T, class Tol>
 std::pair<T, T>
 bisect(F f, T min, T max, Tol tol,
 boost::uintmax_t& max_iter);

 template <class F, class T, class Tol>
 std::pair<T, T>
 bisect(F f, T min, T max, Tol tol);

 template <class F, class T, class Tol, class Policy>
 std::pair<T, T>
 bisect(F f, T min, T max, Tol tol,
 boost::uintmax_t& max_iter, const Policy&);

 template <class F, class T, class Tol>
 std::pair<T, T>
 bracket_and_solve_root(F f, T& guess, T factor, bool rising,
 Tol tol,
 boost::uintmax_t& max_iter);

 template <class F, class T, class Tol, class Policy>
 std::pair<T, T>
 bracket_and_solve_root(F f, T& guess, T factor, bool rising,
 Tol tol,
 boost::uintmax_t& max_iter, const Policy&);

```
Description

These functions solve the root of some function \( f(x) \) without the need for the derivatives of \( f(x) \). The functions here that use TOMS Algorithm 748 are asymptotically the most efficient known, and have been shown to be optimal for a certain classes of smooth functions.

Alternatively, there is a simple bisection routine which can be useful in its own right in some situations, or alternatively for narrowing down the range containing the root, prior to calling a more advanced algorithm.
All the algorithms in this section reduce the diameter of the enclosing interval with the same asymptotic efficiency with which they locate the root. This is in contrast to the derivative based methods which may never significantly reduce the enclosing interval, even though they rapidly approach the root. This is also in contrast to some other derivative-free methods (for example the methods of Brent or Dekker) which only reduce the enclosing interval on the final step. Therefore these methods return a std::pair containing the enclosing interval found, and accept a function object specifying the termination condition. Three function objects are provided for ready-made termination conditions: eps_tolerance causes termination when the relative error in the enclosing interval is below a certain threshold, while equal_floor and equal_ceil are useful for certain statistical applications where the result is known to be an integer. Other user-defined termination conditions are likely to be used only rarely, but may be useful in some specific circumstances.

```cpp
template <class F, class T, class Tol>
std::pair<T, T> bisect(
 F f,
 T min,
 T max,
 Tol tol,
 boost::uintmax_t& max_iter);
```

These functions locate the root using bisection, function arguments are:

- **f**: A unary functor which is the function whose root is to be found.
- **min**: The left bracket of the interval known to contain the root.
- **max**: The right bracket of the interval known to contain the root. It is a precondition that min < max and f(min)*f(max) <= 0, the function signals evaluation error if these preconditions are violated. The action taken is controlled by the evaluation error policy. A best guess may be returned, perhaps significantly wrong.
- **tol**: A binary functor that specifies the termination condition: the function will return the current brackets enclosing the root when tol(min,max) becomes true.
- **max_iter**: The maximum number of invocations of f(x) to make while searching for the root.

The final **Policy** argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Returns: a pair of values r that bracket the root so that:

\[ f(r.first) * f(r.second) \leq 0 \]

and either
tol(r.first, r.second) == true

or

max_iter >= m

where $m$ is the initial value of $max_iter$ passed to the function.

In other words, it's up to the caller to verify whether termination occurred as a result of exceeding $max_iter$ function invocations (easily done by checking the value of $max_iter$ when the function returns), rather than because the termination condition $tol$ was satisfied.

```
template <class F, class T, class Tol>
std::pair<T, T>
bracket_and_solve_root(
 F f,
 const T& guess,
 const T& factor,
 bool rising,
 Tol tol,
 boost::uintmax_t& max_iter);
```

```
template <class F, class T, class Tol, class Policy>
std::pair<T, T>
bracket_and_solve_root(
 F f,
 const T& guess,
 const T& factor,
 bool rising,
 Tol tol,
 boost::uintmax_t& max_iter,
 const Policy&);
```

This is a convenience function that calls $toms748\_solve$ internally to find the root of $f(x)$. It's usable only when $f(x)$ is a monotonic function, and the location of the root is known approximately, and in particular it is known whether the root occurs for positive or negative $x$. The parameters are:

- **f** A unary functor that is the function whose root is to be solved. $f(x)$ must be uniformly increasing or decreasing on $x$.

- **guess** An initial approximation to the root

- **factor** A scaling factor that is used to bracket the root: the value $guess$ is multiplied (or divided as appropriate) by $factor$ until two values are found that bracket the root. A value such as 2 is a typical choice for $factor$.

- **rising** Set to $true$ if $f(x)$ is rising on $x$ and $false$ if $f(x)$ is falling on $x$. This value is used along with the result of $f(guess)$ to determine if $guess$ is above or below the root.

- **tol** A binary functor that determines the termination condition for the search for the root. $tol$ is passed the current brackets at each step, when it returns true then the current brackets are returned as the result.

- **max_iter** The maximum number of function invocations to perform in the search for the root.

The final **Policy** argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the policy documentation for more details.

Returns: a pair of values $r$ that bracket the root so that:
\( f(r.\text{first}) \ast f(r.\text{second}) \leq 0 \)

and either

\( \text{tol}(r.\text{first}, r.\text{second}) == \text{true} \)

or

\( \text{max}_\text{iter} \geq m \)

where \( m \) is the initial value of \( \text{max}_\text{iter} \) passed to the function.

In other words, it's up to the caller to verify whether termination occurred as a result of exceeding \( \text{max}_\text{iter} \) function invocations (easily done by checking the value of \( \text{max}_\text{iter} \) when the function returns), rather than because the termination condition \( \text{tol} \) was satisfied.
These two functions implement TOMS Algorithm 748: it uses a mixture of cubic, quadratic and linear (secant) interpolation to locate the root of $f(x)$. The two functions differ only by whether values for $f(a)$ and $f(b)$ are already available. The parameters are:

- **f**: A unary functor that is the function whose root is to be solved. $f(x)$ need not be uniformly increasing or decreasing on $x$ and may have multiple roots.
- **a**: The lower bound for the initial bracket of the root.
- **b**: The upper bound for the initial bracket of the root. It is a precondition that $a < b$ and that $a$ and $b$ bracket the root to find so that $f(a) \cdot f(b) < 0$.
- **fa**: Optional: the value of $f(a)$.
- **fb**: Optional: the value of $f(b)$.
- **tol**: A binary functor that determines the termination condition for the search for the root. $tol$ is passed the current brackets at each step, when it returns true then the current brackets are returned as the result.
- **max_iter**: The maximum number of function invocations to perform in the search for the root. On exit $max_{\text{iter}}$ is set to actual number of function invocations used.
The final **Policy** argument is optional and can be used to control the behaviour of the function: how it handles errors, what level of precision to use etc. Refer to the **policy documentation for more details**.

**Returns:** a pair of values \( r \) that bracket the root so that:

\[
 f(r.\text{first}) \times f(r.\text{second}) \leq 0
\]

and either

\[
 \text{tol}(r.\text{first}, r.\text{second}) == \text{true}
\]

or

\[
 \text{max}_\text{iter} \geq m
\]

where \( m \) is the initial value of \( \text{max}_\text{iter} \) passed to the function.

In other words, it's up to the caller to verify whether termination occurred as a result of exceeding \( \text{max}_\text{iter} \) function invocations (easily done by checking the value of \( \text{max}_\text{iter} \)), rather than because the termination condition \( \text{tol} \) was satisfied.

```cpp
template <class T>
struct eps_tolerance
{
 eps_tolerance(int bits);
 bool operator()(const T& a, const T& b)const;
};
```

This is the usual termination condition used with these root finding functions. Its operator() will return true when the relative distance between \( a \) and \( b \) is less than twice the machine epsilon for \( T \), or \( 2^{1\text{-bits}} \), whichever is the larger. In other words you set \( \text{bits} \) to the number of bits of precision you want in the result. The minimal tolerance of twice the machine epsilon of \( T \) is required to ensure that we get back a bracketing interval: since this must clearly be at least 1 epsilon in size.

```cpp
struct equal_floor
{
 equal_floor();
 template <class T> bool operator()(const T& a, const T& b)const;
};
```

This termination condition is used when you want to find an integer result that is the floor of the true root. It will terminate as soon as both ends of the interval have the same floor.

```cpp
struct equal.ceil
{
 equal.ceil();
 template <class T> bool operator()(const T& a, const T& b)const;
};
```

This termination condition is used when you want to find an integer result that is the ceil of the true root. It will terminate as soon as both ends of the interval have the same ceil.
This termination condition is used when you want to find an integer result that is the closest to the true root. It will terminate as soon as both ends of the interval round to the same nearest integer.

**Implementation**

The implementation of the bisection algorithm is extremely straightforward and not detailed here. TOMS algorithm 748 is described in detail in:


The implementation here is a faithful translation of this paper into C++.

**Locating Function Minima**

**synopsis**

```cpp
#include <boost/math/tools/minima.hpp>

template <class F, class T>
std::pair<T, T> brent_find_minima(F f, T min, T max, int bits);

template <class F, class T>
std::pair<T, T> brent_find_minima(F f, T min, T max, int bits, boost::uintmax_t& max_iter);
```

**Description**

These two functions locate the minima of the continuous function \(f\) using Brent's algorithm. Parameters are:

- \(f\) The function to minimise. The function should be smooth over the range \([\text{min}, \text{max}]\), with no maxima occurring in that interval.
- \(\text{min}\) The lower endpoint of the range in which to search for the minima.
- \(\text{max}\) The upper endpoint of the range in which to search for the minima.
- \(\text{bits}\) The number of bits precision to which the minima should be found. Note that in principle, the minima can not be located to greater accuracy than the square root of machine epsilon, therefore if \(\text{bits}\) is set to a value greater than one half of the bits in type \(T\), then the value will be ignored.
- \(\text{max}_\text{iter}\) The maximum number of iterations to use in the algorithm, if not provided the algorithm will just keep on going until the minima is found.

**Returns:** a pair containing the value of the abscissa at the minima and the value of \(f(x)\) at the minima.

**Implementation**

This is a reasonably faithful implementation of Brent’s algorithm, refer to:


Testing and Development

Polynomials

Synopsis

```cpp
#include <boost/math/tools/polynomial.hpp>

namespace boost{ namespace math{ namespace tools{

 template <class T>
 class polynomial
 {
 public:
 // typedefs:
 typedef typename std::vector<T>::value_type value_type;
 typedef typename std::vector<T>::size_type size_type;

 // construct:
 polynomial();
 template <class U>
 polynomial(const U* data, unsigned order);
 template <class U>
 polynomial(const U& point);

 // access:
 size_type size()const;
 size_type degree()const;
 value_type& operator[](size_type i);
 const value_type& operator[](size_type i)const;

 // operators:
 template <class U>
 polynomial& operator +=(const U& value);
 template <class U>
 polynomial& operator -=(const U& value);
 template <class U>
 polynomial& operator *=(const U& value);
 template <class U>
 polynomial& operator +=(const polynomial<U>& value);
 template <class U>
 polynomial& operator -=(const polynomial<U>& value);
 template <class U>
 polynomial& operator *=(const polynomial<U>& value);

 template <class T>
 polynomial<T> operator + (const polynomial<T>& a, const polynomial<T>& b);
 template <class T>
 polynomial<T> operator - (const polynomial<T>& a, const polynomial<T>& b);
 template <class T>
 polynomial<T> operator * (const polynomial<T>& a, const polynomial<T>& b);

 template <class T, class U>
 polynomial<T> operator + (const polynomial<T>& a, const U& b);
```
template <class T, class U>
polynomial<T> operator - (const polynomial<T>& a, const U& b);
template <class T, class U>
polynomial<T> operator * (const polynomial<T>& a, const U& b);

template <class U, class T>
polynomial<T> operator + (const U& a, const polynomial<T>& b);
template <class U, class T>
polynomial<T> operator - (const U& a, const polynomial<T>& b);
template <class U, class T>
polynomial<T> operator * (const U& a, const polynomial<T>& b);

template <class charT, class traits, class T>
std::basic_ostream<charT, traits>& operator <<
   (std::basic_ostream<charT, traits>& os, const polynomial<T>& poly);
}

Description

This is a fairly trivial class for polynomial manipulation. Implementation is currently of the "naive" variety, with O(N^2) multiplication for example. This class should not be used in high-performance computing environments: it is intended for the simple manipulation of small polynomials, typically generated for special function approximation.

Advanced manipulations: the FFT, division, GCD, factorisation etc are not currently provided. Submissions for these are of course welcome :-)  

Minimax Approximations and the Remez Algorithm

The directory libs/math/minimax contains a command line driven program for the generation of minimax approximations using the Remez algorithm. Both polynomial and rational approximations are supported, although the latter are tricky to converge: it is not uncommon for convergence of rational forms to fail. No such limitations are present for polynomial approximations which should always converge smoothly.

It's worth stressing that developing rational approximations to functions is often not an easy task, and one to which many books have been devoted. To use this tool, you will need to have a reasonable grasp of what the Remez algorithm is, and the general form of the approximation you want to achieve.

Unless you already familiar with the Remez method you should first read the brief background article explaining the principals behind the Remez algorithm.

The program consists of two parts:

main.cpp Contains the command line parser, and all the calls to the Remez code.
f.cpp Contains the function to approximate.

Therefore to use this tool, you must modify f.cpp to return the function to approximate. The tools supports multiple function approximations within the same compiled program: each as a separate variant:

\[ NTL::RR f(const NTL::RR& x, int variant); \]

Returns the value of the function \texttt{variant} at point \(x\). So if you wish you can just add the function to approximate as a new variant after the existing examples.

In addition to those two files, the program needs to be linked to a patched NTL library to compile.
Note that the function $f$ must return the rational part of the approximation: for example if you are approximating a function $f(x)$ then it is quite common to use:

$$f(x) = g(x) (Y + R(x))$$

where $g(x)$ is the dominant part of $f(x)$, $Y$ is some constant, and $R(x)$ is the rational approximation part, usually optimised for a low absolute error compared to $|Y|$. In this case you would define $f$ to return $f(x)/g(x)$ and then set the y-offset of the approximation to $Y$ (see command line options below).

Many other forms are possible, but in all cases the objective is to split $f(x)$ into a dominant part that you can evaluate easily using standard math functions, and a smooth and slowly changing rational approximation part. Refer to your favourite textbook for more examples.

Command line options for the program are as follows:

- **variant N**: Sets the current function variant to N. This allows multiple functions that are to be approximated to be compiled into the same executable. Defaults to 0.
- **range a b**: Sets the domain for the approximation to the range $[a,b]$, defaults to $[0,1]$.
- **relative**: Sets the Remez code to optimise for relative error. This is the default at program startup. Note that relative error can only be used if $f(x)$ has no roots over the range being optimised.
- **absolute**: Sets the Remez code to optimise for absolute error.
- **pin [true|false]**: "Pins" the code so that the rational approximation passes through the origin. Obviously only set this to true if $R(0)$ must be zero. This is typically used when trying to preserve a root at $[0,0]$ while also optimising for relative error.
- **order N D**: Sets the order of the approximation to $N$ in the numerator and $D$ in the denominator. If $D$ is zero then the result will be a polynomial approximation. There will be $N+D+2$ coefficients in total, the first coefficient of the numerator is zero if $pin$ was set to true, and the first coefficient of the denominator is always one.
- **working-precision N**: Sets the working precision of NTL::RR to $N$ binary digits. Defaults to 250.
- **target-precision N**: Sets the precision of printed output to $N$ binary digits: set to the same number of digits as the type that will be used to evaluate the approximation. Defaults to 53 (for double precision).
- **skew val**: "Skews" the initial interpolated control points towards one end or the other of the range. Positive values skew the initial control points towards the left hand side of the range, and negative values towards the right hand side. If an approximation won't converge (a common situation) try adjusting the skew parameter until the first step yields the smallest possible error. $val$ should be in the range $[-100,+100]$, the default is zero.
- **brake val**: Sets a brake on each step so that the change in the control points is braked by $val\%$. Defaults to 50, try a higher value if an approximation won't converge, or a lower value to get speedier convergence.
- **x-offset val**: Sets the x-offset to $val$: the approximation will be generated for $f(S * (x + X)) + Y$ where $X$ is the x-offset, $S$ is the x-scale and $Y$ is the y-offset. Defaults to zero. To avoid rounding errors, take care to specify a value that can be exactly represented as a floating point number.
- **x-scale val**: Sets the x-scale to $val$: the approximation will be generated for $f(S * (x + X)) + Y$ where $S$ is the x-scale, $X$ is the x-offset and $Y$ is the y-offset. Defaults to one. To avoid rounding errors, take care to specify a value that can be exactly represented as a floating point number.
y-offset val
Sets the y-offset to *val*: the approximation will be generated for $f(S \ast (x + X)) + Y$ where $X$ is the x-offset, $S$ is the x-scale and $Y$ is the y-offset. Defaults to zero. To avoid rounding errors, take care to specify a value that can be exactly represented as a floating point number.

y-offset auto
Sets the y-offset to the average value of $f(x)$ evaluated at the two endpoints of the range plus the midpoint of the range. The calculated value is deliberately truncated to float precision (and should be stored as a float in your code). The approximation will be generated for $f(x + X) + Y$ where $X$ is the x-offset and $Y$ is the y-offset. Defaults to zero.

graph N
Prints N evaluations of $f(x)$ at evenly spaced points over the range being optimised. If unspecified then N defaults to 3. Use to check that $f(x)$ is indeed smooth over the range of interest.

step N
Performs N steps, or one step if N is unspecified. After each step prints: the peak error at the extrema of the error function of the approximation, the theoretical error term solved for on the last step, and the maximum relative change in the location of the Chebyshev control points. The approximation is converged on the minimax solution when the two error terms are (approximately) equal, and the change in the control points has decreased to a suitably small value.

test [float|double|long]
Tests the current approximation at float, double, or long double precision. Useful to check for rounding errors in evaluating the approximation at fixed precision. Tests are conducted at the extrema of the error function of the approximation, and at the zeros of the error function.

rescale a b
Takes the current Chebyshev control points, and rescales them over a new interval [a,b]. Sometimes this can be used to obtain starting control points for an approximation that can not otherwise be converged.

rotate
Moves one term from the numerator to the denominator, but keeps the Chebyshev control points the same. Sometimes this can be used to obtain starting control points for an approximation that can not otherwise be converged.

info
Prints out the current approximation: the location of the zeros of the error function, the location of the Chebyshev control points, the x and y offsets, and of course the coefficients of the polynomials.
Relative Error and Testing

Synopsis

```cpp
#include <boost/math/tools/test.hpp>

template <class T>
T relative_error(T a, T b);

template <class A, class F1, class F2>
 test_result<see-below> test(const A& a, F1 test_func, F2 expect_func);
```

Description

```cpp
template <class T>
T relative_error(T a, T v);
```

Returns the relative error between \(a\) and \(v\) using the usual formula:

\[
\max\left( |\frac{a-v}{a}|, |\frac{a-v}{v}| \right)
\]

In addition the value returned is zero if:

- Both \(a\) and \(v\) are infinite.
- Both \(a\) and \(v\) are denormalised numbers or zero.

Otherwise if only one of \(a\) and \(v\) is zero then the value returned is 1.

```cpp
template <class A, class F1, class F2>
 test_result<see-below> test(const A& a, F1 test_func, F2 expect_func);
```

This function is used for testing a function against tabulated test data.

The return type contains statistical data on the relative errors (max, mean, variance, and the number of test cases etc), as well as the row of test data that caused the largest relative error. Public members of type test_result are:

- `unsigned worst()const;` Returns the row at which the worst error occurred.
- `T min()const;` Returns the smallest relative error found.
- `T max()const;` Returns the largest relative error found.
- `T mean()const;` Returns the mean error found.
- `boost::uintmax_t count()const;` Returns the number of test cases.
- `T variance()const;` Returns the variance of the errors found.
- `T variance1()const;` Returns the unbiased variance of the errors found.
- `T rms()const` Returns the Root Mean Square, or quadratic mean of the errors.
- `test_result& operator+=(const test_result& t)` Combines two test_result's into a single result.
The template parameter of test_result, is the same type as the values in the two dimensional array passed to function test, roughly that's A::value_type::value_type.

Parameter \(a\) is a matrix of test data: and must be a standard library Sequence type, that contains another Sequence type: typically it will be a two dimensional instance of boost::array. Each row of \(a\) should contain all the parameters that are passed to the function under test as well as the expected result.

Parameter test_func is the function under test, it is invoked with each row of test data in \(a\). Typically type F1 is created with Boost.Lambda: see the example below.

Parameter expect_func is a functor that extracts the expected result from a row of test data in \(a\). Typically type F2 is created with Boost.Lambda: see the example below.

If the function under test returns a non-finite value when a finite result is expected, or if a gross error is found, then a message is sent to std::cerr, and a call to BOOST_ERROR() made (which means that including this header requires you use Boost.Test). This is mainly a debugging/development aid (and a good place for a breakpoint).

**Example**

Suppose we want to test the tgamma and lgamma functions, we can create a two dimensional matrix of test data, each row is one test case, and contains three elements: the input value, and the expected results for the tgamma and lgamma functions respectively.

```cpp
static const boost::array<boost::array<TestType, 3>, NumberOfTests> factorials = {
 /* big array of test data goes here */
};
```

Now we can invoke the test function to test tgamma:
using namespace boost::math::tools;
using namespace boost::lambda;

// get a pointer to the function under test:
TestType (*funcp)(TestType) = boost::math::tgamma;

// declare something to hold the result:
test_result<TestType> result;

// and test tgamma against data:

result = test(
    factorials,
    bind(funcp, ret<TestType>(_1[0])), // calls tgamma with factorials[row][0]
    ret<TestType>(_1[1]) // extracts the expected result from factorials[row][1]
);

// Print out some results:

std::cout << "The Mean was " << result.mean() << std::endl;
std::cout << "The worst error was " << (result.max)() << std::endl;
std::cout << "The worst error was at row " << result.worst_case() << std::endl;

// same again with lgamma this time:

funcp = boost::math::lgamma;
result = test(
    factorials,
    bind(funcp, ret<TestType>(_1[0])), // calls lgamma with factorials[row][0]
    ret<TestType>(_1[2]) // extracts the expected result from factorials[row][2]
);

// etc ...

Graphing, Profiling, and Generating Test Data for Special Functions

The class test_data and associated helper functions are designed so that in just a few lines of code you should be able to:

• Profile a continued fraction, or infinite series for convergence and accuracy.

• Generate csv data from a special function that can be imported into your favorite graphing program (or spreadsheet) for further analysis.

• Generate high precision test data.
namespace boost { namespace math { namespace tools {

enum parameter_type {
    random_in_range = 0,
    periodic_in_range = 1,
    power_series = 2,
    dummy_param = 0x80,
};

template <class T>
struct parameter_info;

template <class T>
parameter_info<T> make_random_param(T start_range, T end_range, int n_points);

template <class T>
parameter_info<T> make_periodic_param(T start_range, T end_range, int n_points);

template <class T>
parameter_info<T> make_power_param(T basis, int start_exponent, int end_exponent);

template <class T>
bool get_user_parameter_info(parameter_info<T> &info, const char* param_name);

class test_data {
public:
    typedef std::vector<T> row_type;
    typedef row_type value_type;
private:
    typedef std::set<row_type> container_type;
public:
    typedef typename container_type::reference reference;
    typedef typename container_type::const_reference const_reference;
    typedef typename container_type::iterator iterator;
    typedef typename container_type::const_iterator const_iterator;
    typedef typename container_type::difference_type difference_type;
    typedef typename container_type::size_type size_type;

    // creation:
    test_data() {};
    template <class F>
    test_data(F func, const parameter_info<T> &arg1);

    // insertion:
    template <class F>
    test_data& insert(F func, const parameter_info<T> &arg1);
    template <class F>
    test_data& insert(F func, const parameter_info<T> &arg1, const parameter_info<T> &arg2);
    template <class F>
    test_data& insert(F func, const parameter_info<T> &arg1, const parameter_info<T> &arg2, const parameter_info<T> &arg3);

    void clear();
};
// access:
iterator begin();
iterator end();
const_iterator begin()const;
const_iterator end()const;
bool operator==(const test_data& d)const;
bool operator!=(const test_data& d)const;
void swap(test_data& other);
size_type size()const;
size_type max_size()const;
bool empty()const;

bool operator < (const test_data& dat)const;
bool operator <= (const test_data& dat)const;
bool operator > (const test_data& dat)const;
bool operator >= (const test_data& dat)const;

};// namespaces

Description

This tool is best illustrated with the following series of examples.

The functionality of test_data is split into the following parts:

• A functor that implements the function for which data is being generated: this is the bit you have to write.

• One of more parameters that are to be passed to the functor, these are described in fairly abstract terms: give me N points distributed like this etc.

• The class test_data, that takes the functor and descriptions of the parameters and computes how ever many output points have been requested, these are stored in a sorted container.

• Routines to iterate over the test_data container and output the data in either csv format, or as C++ source code (as a table using Boost.Array).

Example 1: Output Data for Graph Plotting

For example, lets say we want to graph the lgamma function between -3 and 100, one could do this like so:
Math Toolkit

```cpp
#include <boost/math/tools/test_data.hpp>
#include <boost/math/special_functions/gamma.hpp>

int main()
{
 using namespace boost::math::tools;
 // create an object to hold the data:
 test_data<double> data;

 // insert 500 points at uniform intervals between just after -3 and 100:
 double (*pf)(double) = boost::math::lgamma;
 data.insert(pf, make_periodic_param(-3.0 + 0.00001, 100.0, 500));

 // print out in csv format:
 write_csv(std::cout, data, " ");
 return 0;
}
```

Which, when plotted, results in:

![Graph of lgamma(z) vs z](image)

**Example 2: Creating Test Data**

As a second example, let's suppose we want to create highly accurate test data for a special function. Since many special functions have two or more independent parameters, it's very hard to effectively cover all of the possible parameter space without generating gigabytes of data at great computational expense. A second best approach is to provide the tools by which a user (or the library maintainer) can quickly generate more data on demand to probe the function over a particular domain of interest.

In this example we'll generate test data for the beta function using NTL::RR at 1000 bit precision. Rather than call our generic version of the beta function, we'll implement a deliberately naive version of the beta function using lgamma, and rely on the high precision of the data type used to get results accurate to at least 128-bit precision. In this way our test data is independent of whatever clever tricks we may wish to use inside the our beta function.

To start with then, here's the function object that creates the test data:
To create the data, we'll need to input the domains for \(a\) and \(b\) for which the function will be tested: the function `get_user_parameter_info` is designed for just that purpose. The start of main will look something like:
// Set the precision on RR:
NTL::RR::SetPrecision(1000); // bits.
NTL::RR::SetOutputPrecision(40); // decimal digits.

parameter_info<NTL::RR> arg1, arg2;
test_data<NTL::RR> data;

std::cout << "Welcome.\n"
  "This program will generate spot tests for the beta function:\n  " beta(a, b)\n\n";

bool cont;
std::string line;

do{
  // prompt the user for the domain of a and b to test:
  get_user_parameter_info(arg1, "a");
  get_user_parameter_info(arg2, "b");

  // create the data:
  data.insert(beta_data_generator(), arg1, arg2);

  // see if the user want's any more domains tested:
  std::cout << "Any more data [y/n]?";
  std::getline(std::cin, line);
  boost::algorithm::trim(line);
  cont = (line == "y");
}while(cont);

Caution

At this point one potential stumbling block should be mentioned: test_data<>::insert will create a matrix of test data when there are two or more parameters, so if we have two parameters and we're asked for a thousand points on each, that's a million test points in total. Don't say you weren't warned!

There's just one final step now, and that's to write the test data to file:

std::cout << "Enter name of test data file [default=beta_data.ipp]";
std::getline(std::cin, line);
boost::algorithm::trim(line);
if(line == "")
  line = "beta_data.ipp";
std::ofstream ofs(line.c_str());
write_code(ofs, data, "beta_data");

The format of the test data looks something like:
The first two values in each row are the input parameters that were passed to our functor and the last value is the return value from the functor. Had our functor returned a tuple rather than a value, then we would have had one entry for each element in the tuple in addition to the input parameters.

The first #define serves two purposes:

- It reduces the file sizes considerably: all those static_cast's add up to a lot of bytes otherwise (they are needed to suppress compiler warnings when T is narrower than a long double).
- It provides a useful customisation point: for example if we were testing a user-defined type that has more precision than a long double we could change it to:

```cpp
#define SC_(x) lexical_cast<T>(BOOST_STRINGIZE(x))
```

in order to ensure that no truncation of the values occurs prior to conversion to T. Note that this isn't used by default as it's rather hard on the compiler when the table is large.

**Example 3: Profiling a Continued Fraction for Convergence and Accuracy**

Alternatively, let's say we want to profile a continued fraction for convergence and error. As an example, we'll use the continued fraction for the upper incomplete gamma function, the following function object returns the next \( a_N \) and \( b_N \) of the continued fraction each time it's invoked:

```cpp
template <class T>
struct upper_incomplete_gamma_fract
{
private:
 T z, a;
 int k;
public:
 typedef std::pair<T,T> result_type;

 upper_incomplete_gamma_fract(T a1, T z1) :
 z(z1-a1+1), a(a1), k(0)
 {
 }

 result_type operator()()
 {
 ++k;
 z += 2;
 return result_type(k * (a - k), z);
 }
};
```

We want to measure both the relative error, and the rate of convergence of this fraction, so we'll write a functor that returns both as a tuple: class test_data will unpack the tuple for us, and create one column of data for each element in the tuple (in addition to the input parameters):
```cpp
#include <boost/math/tools/test_data.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/tools/ntl.hpp>
#include <boost/tr1/tuple.hpp>

template <class T>
struct profile_gamma_fraction
{
 typedef std::tr1::tuple<T, T> result_type;

 result_type operator()(T val)
 {
 using namespace boost::math::tools;
 // estimate the true value, using arbitrary precision
 // arithmetic and NTL::RR:
 NTL::RR rval(val);
 upper_incomplete_gamma_fract<NTL::RR> f1(rval, rval);
 NTL::RR true_val = continued_fraction_a(f1, 1000);
 //
 // Now get the approximation at double precision, along with the number of
 // iterations required:
 boost::uintmax_t iters = std::numeric_limits<boost::uintmax_t>::max();
 upper_incomplete_gamma_fract<T> f2(val, val);
 T found_val = continued_fraction_a(f2, std::numeric_limits<T>::digits, iters);
 //
 // Work out the relative error, as measured in units of epsilon:
 T err = real_cast<T>(relative_error(true_val, NTL::RR(found_val)) / std::numeric_limits<T>::epsilon());
 //
 // now just return the results as a tuple:
 return std::tr1::make_tuple(err, iters);
 }
};

Feeding that functor into test_data allows rapid output of csv data, for whatever type T we may be interested in:

```cpp
int main()
{
    using namespace boost::math::tools;
    // create an object to hold the data:
    test_data<double> data;
    // insert 500 points at uniform intervals between just after 0 and 100:
    data.insert(profile_gamma_fraction<double>(), make_periodic_param(0.01, 100.0, 100));
    // print out in csv format:
    write_csv(std::cout, data, ",");
    return 0;
}
```

This time there's no need to plot a graph, the first few rows are:

<table>
<thead>
<tr>
<th>a and z, Error/epsilon, Iterations required</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01, 9723.14, 4726</td>
</tr>
<tr>
<td>1.0099, 9.54818, 87</td>
</tr>
<tr>
<td>2.0098, 3.84777, 40</td>
</tr>
<tr>
<td>3.0097, 0.728358, 25</td>
</tr>
<tr>
<td>4.0096, 0.233263, 16</td>
</tr>
</tbody>
</table>

So it's pretty clear that this fraction shouldn't be used for small values of a and z.
Most of this tool has been described already in the examples above, we'll just add the following notes on the non-member functions:

```cpp
template <class T>
parameter_info<T> make_random_param(T start_range, T end_range, int n_points);
```

Tells class test_data to test \(n \) \(n \) random values in the range \([\text{start}_\text{range},\text{end}_\text{range}]\).

```cpp
template <class T>
parameter_info<T> make_periodic_param(T start_range, T end_range, int n_points);
```

Tells class test_data to test \(n \) evenly spaced values in the range \([\text{start}_\text{range},\text{end}_\text{range}]\).

```cpp
template <class T>
parameter_info<T> make_power_param(T basis, int start_exponent, int end_exponent);
```

Tells class test_data to test points of the form \(\text{basis} + R \cdot 2^{\text{exponent}} \) for each \(\text{exponent} \) in the range \([\text{start}_\text{exponent},\text{end}_\text{exponent}]\), and \(R \) a random number in \([0.5, 1]\).

```cpp
template <class T>
bool get_user_parameter_info(parameter_info<T> &info, const char* param_name);
```

Prompts the user for the parameter range and form to use.

Finally, if we don't want the parameter to be included in the output, we can tell test_data by setting it a "dummy parameter":

```cpp
parameter_info<double> p = make_random_param(2.0, 5.0, 10);
p.type |= dummy_param;
```

This is useful when the functor used transforms the parameter in some way before passing it to the function under test, usually the functor will then return both the transformed input and the result in a tuple, so there's no need for the original pseudo-parameter to be included in program output.

Use with User-Defined Floating-Point Types

Using With NTL - a High-Precision Floating-Point Library

The special functions and tools in this library can be used with NTL::RR (an arbitrary precision number type), via the bindings in boost/math/bindings/rr.hpp. See also NTL: A Library for doing Number Theory by Victor Shoup.

Unfortunately NTL::RR doesn't quite satisfy our conceptual requirements, so there is a very thin wrapper class boost::math::ntl::RR defined in boost/math/bindings/rr.hpp that you should use in place of NTL::RR. The class is intended to be a drop-in replacement for the "real" NTL::RR that adds some syntactic sugar to keep this library happy, plus some of the standard library functions not implemented in NTL.

For those functions that are based upon the Lanczos approximation, the bindings defines a series of approximations with up to 61 terms and accuracy up to approximately 3e-113. This therefore sets the upper limit for accuracy to the majority of functions defined this library when used with NTL::RR.

There is a concept checking test program for NTL support here.
Using With MPFR / GMP - a High-Precision Floating-Point Library

The special functions and tools in this library can be used with MPFR (an arbitrary precision number type based on the GMP library), via the bindings in boost/math/bindings/mpfr.hpp.

In order to use these bindings you will need to have installed MPFR plus it’s dependency the GMP library and the C++ wrapper for MPFR known as gmpfrxx (or mpfr_class).

Unfortunately mpfr_class doesn’t quite satisfy our conceptual requirements, so there is a very thin set of additional interfaces and some helper traits defined in boost/math/bindings/mpfr.hpp that you should use in place of including ‘gmpfrxx.h’ directly. The existing mpfr_class is then usable unchanged once this header is included, so it’s performance-enhancing expression templates are preserved and fully supported by this library:

```cpp
#include <boost/math/bindings/mpfr.hpp>
#include <boost/math/special_functions/gamma.hpp>

int main()
{
  mpfr_class::set_dprec(500); // 500 bit precision
  // Note that the argument to tgamma is an expression template, 
  // that's just fine here:
  mpfr_class v = boost::math::tgamma(sqrt(mpfr_class(2)));
  std::cout << std::setprecision(50) << v << std::endl;
}
```

For those functions that are based upon the Lanczos approximation, the bindings defines a series of approximations with up to 61 terms and accuracy up to approximately 3e-113. This therefore sets the upper limit for accuracy to the majority of functions defined this library when used with mpfr_class.

There is a concept checking test program for mpfr support here.

Conceptual Requirements for Real Number Types

The functions, and statistical distributions in this library can be used with any type RealType that meets the conceptual requirements given below. All the built in floating point types will meet these requirements. User defined types that meet the requirements can also be used. For example, with a thin wrapper class one of the types provided with NTL (RR) can be used. Submissions of binding to other extended precision types would also be most welcome!

The guiding principal behind these requirements, is that a RealType behaves just like a built in floating point type.

Basic Arithmetic Requirements

These requirements are common to all of the functions in this library.

In the following table r is an object of type RealType, cr and cr2 are objects of type const RealType, and ca is an object of type const arithmetic-type (arithmetic types include all the built in integers and floating point types).
<table>
<thead>
<tr>
<th>Expression</th>
<th>Result Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RealType(cr)</td>
<td>RealType</td>
<td>RealType is copy constructible.</td>
</tr>
<tr>
<td>RealType(ca)</td>
<td>RealType</td>
<td>RealType is copy constructible from the arithmetic types.</td>
</tr>
<tr>
<td>r = cr</td>
<td>RealType&</td>
<td>Assignment operator.</td>
</tr>
<tr>
<td>r = ca</td>
<td>RealType&</td>
<td>Assignment operator from the arithmetic types.</td>
</tr>
<tr>
<td>r += cr</td>
<td>RealType&</td>
<td>Adds cr to r.</td>
</tr>
<tr>
<td>r += ca</td>
<td>RealType&</td>
<td>Adds ar to r.</td>
</tr>
<tr>
<td>r -= cr</td>
<td>RealType&</td>
<td>Subtracts cr from r.</td>
</tr>
<tr>
<td>r -= ca</td>
<td>RealType&</td>
<td>Subtracts ca from r.</td>
</tr>
<tr>
<td>r *= cr</td>
<td>RealType&</td>
<td>Multiplies r by cr.</td>
</tr>
<tr>
<td>r *= ca</td>
<td>RealType&</td>
<td>Multiplies r by ca.</td>
</tr>
<tr>
<td>r /= cr</td>
<td>RealType&</td>
<td>Divides r by cr.</td>
</tr>
<tr>
<td>r /= ca</td>
<td>RealType&</td>
<td>Divides r by ca.</td>
</tr>
<tr>
<td>-r</td>
<td>RealType</td>
<td>Unary Negation.</td>
</tr>
<tr>
<td>+r</td>
<td>RealType&</td>
<td>Identity Operation.</td>
</tr>
<tr>
<td>cr + cr2</td>
<td>RealType</td>
<td>Binary Addition</td>
</tr>
<tr>
<td>cr + ca</td>
<td>RealType</td>
<td>Binary Addition</td>
</tr>
<tr>
<td>ca + cr</td>
<td>RealType</td>
<td>Binary Addition</td>
</tr>
<tr>
<td>cr - cr2</td>
<td>RealType</td>
<td>Binary Subtraction</td>
</tr>
<tr>
<td>cr - ca</td>
<td>RealType</td>
<td>Binary Subtraction</td>
</tr>
<tr>
<td>ca - cr</td>
<td>RealType</td>
<td>Binary Subtraction</td>
</tr>
<tr>
<td>cr * cr2</td>
<td>RealType</td>
<td>Binary Multiplication</td>
</tr>
<tr>
<td>cr * ca</td>
<td>RealType</td>
<td>Binary Multiplication</td>
</tr>
<tr>
<td>ca * cr</td>
<td>RealType</td>
<td>Binary Multiplication</td>
</tr>
<tr>
<td>cr / cr2</td>
<td>RealType</td>
<td>Binary Subtraction</td>
</tr>
<tr>
<td>cr / ca</td>
<td>RealType</td>
<td>Binary Subtraction</td>
</tr>
<tr>
<td>ca / cr</td>
<td>RealType</td>
<td>Binary Subtraction</td>
</tr>
<tr>
<td>cr == cr2</td>
<td>bool</td>
<td>Equality Comparison</td>
</tr>
<tr>
<td>cr == ca</td>
<td>bool</td>
<td>Equality Comparison</td>
</tr>
</tbody>
</table>
Expression | Result Type | Notes |
--- | --- | --- |
ca == cr | bool | Equality Comparison |
cr != cr2 | bool | Inequality Comparison |
cr != ca | bool | Inequality Comparison |
ca != cr | bool | Inequality Comparison |
ca <= cr | bool | Less than equal to. |
ca <= cr2 | bool | Less than equal to. |
cr <= ca | bool | Less than equal to. |
cr <= cr2 | bool | Less than equal to. |
cr >= cr2 | bool | Greater than equal to. |
cr >= ca | bool | Greater than equal to. |
ca >= cr | bool | Greater than equal to. |
cr < cr2 | bool | Less than comparison. |
cr < ca | bool | Less than comparison. |
ca < cr | bool | Less than comparison. |
cr > cr2 | bool | Greater than comparison. |
cr > ca | bool | Greater than comparison. |
ca > cr | bool | Greater than comparison. |
boost::math::tools::digits<RealType>() | int | The number of digits in the significand of RealType. |
boost::math::tools::max_value<RealType>() | RealType | The largest representable number by type RealType. |
boost::math::tools::min_value<RealType>() | RealType | The smallest representable number by type RealType. |
boost::math::tools::log_max_value<RealType>() | RealType | The natural logarithm of the largest representable number by type RealType. |
boost::math::tools::log_min_value<RealType>() | RealType | The natural logarithm of the smallest representable number by type RealType. |
boost::math::tools::epsilon<RealType>() | RealType | The machine epsilon of RealType. |

Note that:

1. The functions `log_max_value` and `log_min_value` can be synthesised from the others, and so no explicit specialisation is required.
2. The function \(\epsilon \) can be synthesised from the others, so no explicit specialisation is required provided the precision of RealType does not vary at runtime (see the header boost/math/bindings/rr.hpp for an example where the precision does vary at runtime).

3. The functions digits, max_value and min_value, all get synthesised automatically from std::numeric_limits. However, if numeric_limits is not specialised for type RealType, then you will get a compiler error when code tries to use these functions, unless you explicitly specialise them. For example if the precision of RealType varies at runtime, then numeric_limits support may not be appropriate, see boost/math/bindings/rr.hpp for examples.

Warning

If std::numeric_limits<> is not specialized for type RealType then the default float precision of 6 decimal digits will be used by other Boost programs including:

- Boost.Test: giving misleading error messages like

 "difference between \{9.79796\} and \{9.79796\} exceeds 5.42101e-19%".

- Boost.LexicalCast and Boost.Serialization when converting the number to a string, causing potentially serious loss of accuracy on output.

Although it might seem obvious that RealType should require std::numeric_limits to be specialized, this is not sensible for NTL::RR and similar classes where the number of digits is a runtime parameter (where as for numeric_limits it has to be fixed at compile time).

Standard Library Support Requirements

Many (though not all) of the functions in this library make calls to standard library functions, the following table summarises the requirements. Note that most of the functions in this library will only call a small subset of the functions listed here, so if in doubt whether a user defined type has enough standard library support to be useable the best advise is to try it and see!

In the following table \(r \) is an object of type RealType, \(cr1 \) and \(cr2 \) are objects of type const RealType, and \(i \) is an object of type int.
<table>
<thead>
<tr>
<th>Expression</th>
<th>Result Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>fabs(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>abs(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>ceil(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>floor(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>exp(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>pow(cr1, cr2)</td>
<td>RealType</td>
</tr>
<tr>
<td>sqrt(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>log(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>frexp(cr1, &i)</td>
<td>RealType</td>
</tr>
<tr>
<td>ldexp(cr1, i)</td>
<td>RealType</td>
</tr>
<tr>
<td>cos(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>sin(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>asin(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>tan(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>atan(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>fmod(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>round(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>iround(cr1)</td>
<td>int</td>
</tr>
<tr>
<td>trunc(cr1)</td>
<td>RealType</td>
</tr>
<tr>
<td>itrunc(cr1)</td>
<td>int</td>
</tr>
</tbody>
</table>

Note that the table above lists only those standard library functions known to be used (or likely to be used in the near future) by this library. The following functions: acos, atan2, fmod, cosh, sinh, tanh, log10, lround, llround, ltrunc, lltrunc and modf are not currently used, but may be if further special functions are added.

Note that the round, trunc and modf functions are not part of the current C++ standard: they are part of the additions added to C99 which will likely be in the next C++ standard. There are Boost versions of these provided as a backup, and the functions are always called unqualified so that argument-dependent-lookup can take place.

In addition, for efficient and accurate results, a Lanczos approximation is highly desirable. You may be able to adapt an existing approximation from boost/math/special_functions/lanczos.hpp or boost/math/bindings/detail/big_lanczos.hpp: in the former case you will need change static_cast's to lexical_cast's, and the constants to strings (in order to ensure the coefficients aren't truncated to long double) and then specialise lanczos_traits for type T. Otherwise you may have to hack libs/math/tools/lanczos_generator.cpp to find a suitable approximation for your RealType. The code will still compile if you don't do this, but both accuracy and efficiency will be greatly compromised in any function that makes use of the gamma/beta/erf family of functions.
Conceptual Requirements for Distribution Types

A `DistributionType` is a type that implements the following conceptual requirements, and encapsulates a statistical distribution.

Please note that this documentation should not be used as a substitute for the reference documentation, and tutorial of the statistical distributions.

In the following table, \(d \) is an object of type `DistributionType`, \(cd \) is an object of type `const DistributionType` and \(cr \) is an object of a type convertible to `RealType`.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>distributionType::value_type</code></td>
<td><code>RealType</code></td>
<td>The real-number type <code>RealType</code> upon which the distribution operates.</td>
</tr>
<tr>
<td><code>distributionType::policy_type</code></td>
<td><code>RealType</code></td>
<td>The Policy to use when evaluating functions that depend on this distribution.</td>
</tr>
<tr>
<td>(d = cd)</td>
<td><code>Distribution&</code></td>
<td>Distribution types are assignable.</td>
</tr>
<tr>
<td><code>distribution(cd)</code></td>
<td><code>Distribution</code></td>
<td>Distribution types are copy constructible.</td>
</tr>
<tr>
<td><code>pdf(cd, cr)</code></td>
<td><code>RealType</code></td>
<td>Returns the PDF of the distribution.</td>
</tr>
<tr>
<td><code>cdf(cd, cr)</code></td>
<td><code>RealType</code></td>
<td>Returns the CDF of the distribution.</td>
</tr>
<tr>
<td><code>cdf(complement(cd, cr))</code></td>
<td><code>RealType</code></td>
<td>Returns the complement of the CDF of the distribution, the same as: (1 - cdf(cd, cr))</td>
</tr>
<tr>
<td><code>quantile(cd, cr)</code></td>
<td><code>RealType</code></td>
<td>Returns the quantile of the distribution.</td>
</tr>
<tr>
<td><code>quantile(complement(cd, cr))</code></td>
<td><code>RealType</code></td>
<td>Returns the quantile of the distribution, starting from the complement of the probability, the same as: (\text{quantile}(cd, 1-cr))</td>
</tr>
<tr>
<td><code>chf(cd, cr)</code></td>
<td><code>RealType</code></td>
<td>Returns the cumulative hazard function of the distribution.</td>
</tr>
<tr>
<td><code>hazard(cd, cr)</code></td>
<td><code>RealType</code></td>
<td>Returns the hazard function of the distribution.</td>
</tr>
<tr>
<td><code>kurtosis(cd)</code></td>
<td><code>RealType</code></td>
<td>Returns the kurtosis of the distribution.</td>
</tr>
<tr>
<td><code>kurtosis_excess(cd)</code></td>
<td><code>RealType</code></td>
<td>Returns the kurtosis excess of the distribution.</td>
</tr>
<tr>
<td><code>mean(cd)</code></td>
<td><code>RealType</code></td>
<td>Returns the mean of the distribution.</td>
</tr>
<tr>
<td><code>mode(cd)</code></td>
<td><code>RealType</code></td>
<td>Returns the mode of the distribution.</td>
</tr>
<tr>
<td><code>skewness(cd)</code></td>
<td><code>RealType</code></td>
<td>Returns the skewness of the distribution.</td>
</tr>
<tr>
<td><code>standard_deviation(cd)</code></td>
<td><code>RealType</code></td>
<td>Returns the standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>variance(cd)</code></td>
<td><code>RealType</code></td>
<td>Returns the variance of the distribution.</td>
</tr>
</tbody>
</table>

Conceptual Archetypes and Testing

There are several concept archetypes available:

```cpp
#include <boost/concepts/std_real_concept.hpp>
```
std_real_concept is an archetype for the built-in Real types.

The main purpose in providing this type is to verify that standard library functions are found via a using declaration - bringing those functions into the current scope - and not just because they happen to be in global scope.

In order to ensure that a call to say pow can be found either via argument dependent lookup, or failing that then in the std namespace: all calls to standard library functions are unqualified, with the std:: versions found via a using declaration to make them visible in the current scope. Unfortunately it's all too easy to forget the using declaration, and call the double version of the function that happens to be in the global scope by mistake.

For example if the code calls ::pow rather than std::pow, the code will cleanly compile, but truncation of long doubles to double will cause a significant loss of precision. In contrast a template instantiated with std_real_concept will only compile if the all the standard library functions used have been brought into the current scope with a using declaration.

There is a test program libs/math/test/std_real_concept_check.cpp that instantiates every template in this library with type std_real_concept to verify it's usage of standard library functions.

#include <boost/math/concepts/real_concept.hpp>

real_concept is an archetype for user defined real types, it declares it's standard library functions in it's own namespace: these will only be found if they are called unqualified allowing argument dependent lookup to locate them. In addition this type is useable at runtime: this allows code that would not otherwise be exercised by the built-in floating point types to be tested. There is no std::numeric_limits<> support for this type, since this is not a conceptual requirement for RealType's.

NTL RR is an example of a type meeting the requirements that this type models, but note that use of a thin wrapper class is required: refer to "Using With NTL - a High-Precision Floating-Point Library".

There is no specific test case for type real_concept, instead, since this type is usable at runtime, each individual test case as well as testing float, double and long double, also tests real_concept.

#include <boost/math/concepts/distribution.hpp>
The class template `distribution_archetype` is a model of the Distribution concept.

The class template `DistributionConcept` is a concept checking class for distribution types.

The test program `distribution_concept_check.cpp` is responsible for using `DistributionConcept` to verify that all the distributions in this library conform to the Distribution concept.

The class template `DistributionConcept` verifies the existence (but not proper function) of the non-member accessors required by the Distribution concept. These are checked by calls like

```cpp
v = pdf(dist, x); // (Result v is ignored).
```

And in addition, those that accept two arguments do the right thing when the arguments are of different types (the result type is always the same as the distribution's value_type). (This is implemented by some additional forwarding-functions in derived_accessors.hpp, so that there is no need for any code changes. Likewise boilerplate versions of the hazard/chf/coefficient_of_variation functions are implemented in there too.)

Policies

Policy Overview

Policies are a powerful fine-grain mechanism that allow you to customise the behaviour of this library according to your needs. There is more information available in the policy tutorial and the policy reference.

Generally speaking unless you find that the default policy behaviour when encountering 'bad' argument values does not meet your needs, you should not need to worry about policies.

Policies are a compile-time mechanism that allow you to change error-handling or calculation precision either program wide, or at the call site.

Although the policy mechanism itself is rather complicated, in practice it is easy to use, and very flexible.

Using policies you can control:

- How results from 'bad' arguments are handled, including those that cannot be fully evaluated.
- How accuracy is controlled by internal promotion to use more precise types.
- What working precision should be used to calculate results.
- What to do when a mathematically undefined function is used: Should this raise a run-time or compile-time error?
- Whether discrete functions, like the binomial, should return real or only integral values, and how they are rounded.
- How many iterations a special function is permitted to perform in a series evaluation or root finding algorithm before it gives up and raises an evaluation_error.
You can control policies:

- Using macros to change any default policy: the is the preferred method for installation wide policies.
- At your chosen namespace scope for distributions and/or functions: this is the preferred method for project, namespace, or translation unit scope policies.
- In an ad-hoc manner by passing a specific policy to a special function, or to a statistical distribution.

Policy Tutorial

So Just What is a Policy Anyway?

A policy is a compile-time mechanism for customising the behaviour of a special function, or a statistical distribution. With Policies you can control:

- What action to take when an error occurs.
- What happens when you call a function that is mathematically undefined (for example if you ask for the mean of a Cauchy distribution).
- What happens when you ask for a quantile of a discrete distribution.
- Whether the library is allowed to internally promote float to double and double to long double in order to improve precision.
- What precision to use when calculating the result.

Some of these policies could arguably be runtime variables, but then we couldn’t use compile-time dispatch internally to select the best evaluation method for the given policies.

For this reason a Policy is a *type*: in fact it’s an instance of the class template `boost::math::policies::policy< >`. This class is just a compile-time-container of user-selected policies (sometimes called a type-list):

```cpp
using namespace boost::math::policies;
//
// Define a policy that sets ::errno on overflow, and does
// not promote double to long double internally:
//
typedef policy<domain_error<errno_on_error>, promote_double<false> > mypolicy;
```

Policies Have Sensible Defaults

Most of the time you can just ignore the policy framework, the defaults for the various policies are as follows, if these work OK for you then you can stop reading now!

<table>
<thead>
<tr>
<th>Policy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Error</td>
<td>Throws a <code>std::domain_error</code> exception.</td>
</tr>
<tr>
<td>Pole Error</td>
<td>Occurs when a function is evaluated at a pole: throws a <code>std::domain_error</code> exception.</td>
</tr>
<tr>
<td>Overflow Error</td>
<td>Throws a <code>std::overflow_error</code> exception.</td>
</tr>
<tr>
<td>Underflow</td>
<td>Ignores the underflow, and returns zero.</td>
</tr>
<tr>
<td>Denormalised Result</td>
<td>Ignores the fact that the result is denormalised, and returns it.</td>
</tr>
<tr>
<td>Rounding Error</td>
<td>Throws a <code>boost::math::rounding_error</code> exception.</td>
</tr>
<tr>
<td>Internal Evaluation Error</td>
<td>Throws a <code>boost::math::evaluation_error</code> exception.</td>
</tr>
<tr>
<td>Indeterminate Result Error</td>
<td>Returns a result that depends on the function where the error occurred.</td>
</tr>
</tbody>
</table>
Promotion of float to double

Does occur by default - gives full float precision results.

Promotion of double to long double

Does occur by default if long double offers more precision than double.

Precision of Approximation Used

By default uses an approximation that will result in the lowest level of error for the type of the result.

Behaviour of Discrete Quantiles

The quantile function will by default return an integer result that has been rounded outwards.
That is to say lower quantiles (where the probability is less than 0.5) are rounded downward,
and upper quantiles (where the probability is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least the requested coverage will be present in the central region, and no more than the requested coverage will be present in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete Distributions before using the quantile function on a discrete distribution. The reference docs describe how to change the rounding policy for these distributions.

What's more, if you define your own policy type, then it automatically inherits the defaults for any policies not explicitly set, so given:

```cpp
using namespace boost::math::policies;

// Define a policy that sets ::errno on overflow, and does
// not promote double to long double internally:
//
typedef policy<domain_error<errno_on_error>, promote_double<false> > mypolicy;
```

then mypolicy defines a policy where only the overflow error handling and double-promotion policies differ from the defaults.

So How are Policies Used Anyway?

The details follow later, but basically policies can be set by either:

- Defining some macros that change the default behaviour: **this is the recommended method for setting installation-wide policies**.
- By instantiating a distribution object with an explicit policy: this is mainly reserved for ad hoc policy changes.
- By passing a policy to a special function as an optional final argument: this is mainly reserved for ad hoc policy changes.
- By using some helper macros to define a set of functions or distributions in the current namespace that use a specific policy: **this is the recommended method for setting policies on a project- or translation-unit-wide basis**.

The following sections introduce these methods in more detail.

Changing the Policy Defaults

The default policies used by the library are changed by the usual configuration macro method.

For example, passing `-DBOOST_MATH_DOMAIN_ERROR_POLICY=errno_on_error` to your compiler will cause domain errors to set ::errno and return a NaN rather than the usual default behaviour of throwing a `std::domain_error` exception.
Tip

For Microsoft Visual Studio, you can add to the Project Property Page, C/C++, Preprocessor, Preprocessor definitions like:

```
BOOST_MATH_ASSERT_UNDEFINED_POLICY=0
BOOST_MATH_OVERFLOW_ERROR_POLICY=errno_on_error
```

This may be helpful to avoid complications with pre-compiled headers that may mean that the equivalent definitions in source code:

```
#define BOOST_MATH_ASSERT_UNDEFINED_POLICY false
#define BOOST_MATH_OVERFLOW_ERROR_POLICY errno_on_error
```

may be ignored.

The compiler command line shows:

```
/D "BOOST_MATH_ASSERT_UNDEFINED_POLICY=0"
/D "BOOST_MATH_OVERFLOW_ERROR_POLICY=errno_on_error"
```

There is however a very important caveat to this:

Important

Default policies changed by setting configuration macros must be changed uniformly in every translation unit in the program.

Failure to follow this rule may result in violations of the "One Definition Rule (ODR)" and result in unpredictable program behaviour.

That means there are only two safe ways to use these macros:

- Edit them in boost/math/tools/user.hpp, so that the defaults are set on an installation-wide basis. Unfortunately this may not be convenient if you are using a pre-installed Boost distribution (on Linux for example).
- Set the defines in your project's Makefile or build environment, so that they are set uniformly across all translation units.

What you should not do is:

- Set the defines in the source file using `#define` as doing so almost certainly will break your program, unless you're absolutely certain that the program is restricted to a single translation unit.

And, yes, you will find examples in our test programs where we break this rule: but only because we know there will always be a single translation unit only: don't say that you weren't warned!

The following example demonstrates the effect of setting the macro `BOOST_MATH_DOMAIN_ERROR_POLICY` when an invalid argument is encountered. For the purposes of this example, we'll pass a negative degrees of freedom parameter to the student's t distribution.

Since we know that this is a single file program we could just add:
#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error

to the top of the source file to change the default policy to one that simply returns a NaN when a domain error occurs. Alternatively we could use:

#define BOOST_MATH_DOMAIN_ERROR_POLICY errno_on_error

To ensure the ::errno is set when a domain error occurs as well as returning a NaN.

This is safe provided the program consists of a single translation unit and we place the define before any #includes. Note that should we add the define after the includes then it will have no effect! A warning such as:

warning C4005: 'BOOST_MATH_OVERFLOW_ERROR_POLICY' : macro redefinition

is a certain sign that it will not have the desired effect.

We'll begin our sample program with the needed includes:

```
// Boost
#include <boost/math/distributions/students_t.hpp>
using boost::math::students_t; // Probability of students_t(df, t).

// std
#include <iostream>
using std::cout;
using std::endl;
#include <stdexcept>
using std::exception;
```

Next we'll define the program's main() to call the student's t distribution with an invalid degrees of freedom parameter, the program is set up to handle either an exception or a NaN:
```cpp
int main()
{
    cout << "Example error handling using Student's t function. " << endl;
    cout << "BOOST_MATH_DOMAIN_ERROR_POLICY is set to: "
        << BOOST_STRINGIZE(BOOST_MATH_DOMAIN_ERROR_POLICY) << endl;

    double degrees_of_freedom = -1; // A bad argument!
    double t = 10;

    try {
        errno = 0;
        students_t dist(degrees_of_freedom); // exception is thrown here if enabled
        double p = cdf(dist, t);
        // test for error reported by other means:
        if(BOOST_MATH_ISNAN(p))
        {
            cout << "cdf returned a NaN!" << endl;
            cout << "errno is set to: " << errno << endl;
        }
        else
            cout << "Probability of Student's t is " << p << endl;
    }
    catch(const std::exception& e)
    {
        std::cout << "Message from thrown exception was:
                    " << e.what() << std::endl;
    }

    return 0;
} // int main()
```

Here's what the program output looks like with a default build (one that does throw exceptions):

Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: throw_on_error

Message from thrown exception was:
 Error in function boost::math::students_t_distribution<double>::students_t_distribution:
 Degrees of freedom argument is -1, but must be > 0 !

Alternatively let's build with:

```cpp
#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error
```

Now the program output is:

Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: ignore_error
cdf returned a NaN!
errno is set to: 0

And finally let's build with:

```cpp
#define BOOST_MATH_DOMAIN_ERROR_POLICY errno_on_error
```

Which gives the output:
Example error handling using Student's t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: errno_on_error
cdf returned a NaN!
errno is set to: 33

Setting Policies for Distributions on an Ad Hoc Basis

All of the statistical distributions in this library are class templates that accept two template parameters, both with sensible defaults, for example:

```cpp
namespace boost { namespace math {

template <class RealType = double, class Policy = policies::policy<> >
class fisher_f_distribution;

typedef fisher_f_distribution<> fisher_f;
}}
```

This policy gets used by all the accessor functions that accept a distribution as an argument, and forwarded to all the functions called by these. So if you use the shorthand-typedef for the distribution, then you get double precision arithmetic and all the default policies.

However, say for example we wanted to evaluate the quantile of the binomial distribution at float precision, without internal promotion to double, and with the result rounded to the nearest integer, then here's how it can be done:

```cpp
#include <boost/math/distributions/binomial.hpp>

// Begin by defining a policy type, that gives the // behaviour we want:
//
using namespace boost::math::policies;
typedef policy<
    promote_float<false>,
    discrete_quantile<integer_round_nearest>
> mypolicy;

// Then define a distribution that uses it:
//
typedef boost::math::binomial_distribution<float, mypolicy> mybinom;

// And now use it to get the quantile:
//
int main()
{
    std::cout << "quantile is: " <<
        quantile(mybinom(200, 0.25), 0.05) << std::endl;
}
```

Which outputs:

```
quantile is: 40
```
Changing the Policy on an Ad Hoc Basis for the Special Functions

All of the special functions in this library come in two overloaded forms, one with a final "policy" parameter, and one without. For example:

```cpp
namespace boost { namespace math {

    template <class RealType, class Policy>
    RealType tgamma(RealType, const Policy&);

    template <class RealType>
    RealType tgamma(RealType);

}} // namespaces
```

Normally, the second version is just a forwarding wrapper to the first like this:

```cpp
template <class RealType>
inline RealType tgamma(RealType x)
{
    return tgamma(x, policies::policy<>());
}
```

So calling a special function with a specific policy is just a matter of defining the policy type to use and passing it as the final parameter. For example, suppose we want `tgamma` to behave in a C-compatible fashion and set `::errno` when an error occurs, and never throw an exception:

```cpp
#include <boost/math/special_functions/gamma.hpp>

// Define the policy to use:
using namespace boost::math::policies;

typedef policy<domain_error<errno_on_error>,
    pole_error<errno_on_error>,
    overflow_error<errno_on_error>,
    evaluation_error<errno_on_error>
> c_policy;

// Now use the policy when calling tgamma:
int main()
{
    errno = 0;
    std::cout << "Result of tgamma(30000) is: " << boost::math::tgamma(30000, c_policy()) << std::endl;
    std::cout << "errno = " << errno << std::endl;
    std::cout << "Result of tgamma(-10) is: " << boost::math::tgamma(-10, c_policy()) << std::endl;
    std::cout << "errno = " << errno << std::endl;
}
```

which outputs:
Alternatively, for ad hoc use, we can use the `make_policy` helper function to create a policy for us: this usage is more verbose, so is probably only preferred when a policy is going to be used once only:

```cpp
#include <boost/math/special_functions/gamma.hpp>

int main()
{
    using namespace boost::math::policies;
    errno = 0;
    std::cout << "Result of tgamma(30000) is: "
               << boost::math::tgamma(30000,
                              make_policy(
                                  domain_error<errno_on_error>(),
                                  pole_error<errno_on_error>(),
                                  overflow_error<errno_on_error>(),
                                  evaluation_error<errno_on_error>()
                              )
             ) << std::endl;
    // Check errno was set:
    std::cout << "errno = " << errno << std::endl;
    // and again with evaluation at a pole:
    std::cout << "Result of tgamma(-10) is: "
               << boost::math::tgamma(-10,
                              make_policy(
                                  domain_error<errno_on_error>(),
                                  pole_error<errno_on_error>(),
                                  overflow_error<errno_on_error>(),
                                  evaluation_error<errno_on_error>()
                              )
             ) << std::endl;
    // Check errno was set:
    std::cout << "errno = " << errno << std::endl;
}
```

Setting Policies at Namespace or Translation Unit Scope

Sometimes what you want to do is just change a set of policies within the current scope: the one thing you should not do in this situation is use the configuration macros, as this can lead to "One Definition Rule" violations. Instead this library provides a pair of macros especially for this purpose.

Let’s consider the special functions first: we can declare a set of forwarding functions that all use a specific policy using the macro `BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(Policy)`. This macro should be used either inside a unique namespace set aside for the purpose, or an unnamed namespace if you just want the functions visible in global scope for the current file only.

Suppose we want `C::foo()` to behave in a C-compatible way and set `::errno` on error rather than throwing any exceptions.

We’ll begin by including the needed header:

```cpp
#include <boost/math/special_functions.hpp>
```
Open up the "C" namespace that we'll use for our functions, and define the policy type we want: in this case one that sets ::errno rather than throwing exceptions. Any policies we don't specify here will inherit the defaults:

```cpp
namespace C {
    using namespace boost::math::policies;

typedef policy<
    domain_error<errno_on_error>,
    pole_error<errno_on_error>,
    overflow_error<errno_on_error>,
    evaluation_error<errno_on_error>
> c_policy;
}
```

All we need do now is invoke the BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS macro passing our policy type as the single argument:

```cpp
BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(c_policy)
}`
```

We now have a set of forwarding functions defined in namespace C that all look something like this:

```cpp
template <class RealType>
inline typename boost::math::tools::promote_args<RT>::type
tgamma(RT z)
    { return boost::math::tgamma(z, c_policy()); }
}
```

So that when we call `C::tgamma(z)` we really end up calling `boost::math::tgamma(z, C::c_policy())`:

```cpp
int main()
{
    errno = 0;
    std::cout << "Result of tgamma(30000) is: " << C::tgamma(30000) << std::endl;
    std::cout << "errno = " << errno << std::endl;
    std::cout << "Result of tgamma(-10) is: " << C::tgamma(-10) << std::endl;
    std::cout << "errno = " << errno << std::endl;
}
```

Which outputs:

```
Result of C::tgamma(30000) is: 1.#INF
errno = 34
Result of C::tgamma(-10) is: 1.#QNAN
errno = 33
```

This mechanism is particularly useful when we want to define a project-wide policy, and don't want to modify the Boost source or set - possibly fragile and easy to forget - project wide build macros.

The same mechanism works well at file scope as well, by using an unnamed namespace, we can ensure that these declarations don't conflict with any alternate policies present in other translation units:
```
#include <boost/math/special_functions.hpp>

namespace {

using namespace boost::math::policies;

typedef policy<
    domain_error<errno_on_error>,
    pole_error<errno_on_error>,
    overflow_error<errno_on_error>,
    evaluation_error<errno_on_error>
> c_policy;

BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(c_policy)
} // close unnamed namespace

int main()
{
    errno = 0;
    std::cout << "Result of tgamma(30000) is: " << tgamma(30000) << std::endl;
    std::cout << "errno = " << errno << std::endl;
    std::cout << "Result of tgamma(-10) is: " << tgamma(-10) << std::endl;
    std::cout << "errno = " << errno << std::endl;
}
```

Handling the statistical distributions is very similar except that now the macro `BOOST_MATH_DECLARE_DISTRIBUTIONS` accepts two parameters: the floating point type to use, and the policy type to apply. For example:

```
BOOST_MATH_DECLARE_DISTRIBUTIONS(double, mypolicy)
```

Results a set of typedefs being defined like this:

```
typedef boost::math::normal_distribution<double, mypolicy> normal;
```

The name of each typedef is the same as the name of the distribution class template, but without the "_distribution" suffix.

Suppose we want a set of distributions to behave as follows:

- Return infinity on overflow, rather than throwing an exception.
- Don't perform any promotion from double to long double internally.
- Return the closest integer result from the quantiles of discrete distributions.

We'll begin by including the needed header:

```
#include <boost/math/distributions.hpp>
```

Open up an appropriate namespace for our distributions, and define the policy type we want. Any policies we don't specify here will inherit the defaults:
namespace my_distributions{
using namespace boost::math::policies;

typedef policy<
 // return infinity and set errno rather than throw:
 overflow_error<errno_on_error>,
 // Don't promote double -> long double internally:
 promote_double<false>,
 // Return the closest integer result for discrete quantiles:
 discrete_quantile<integer_round_nearest>
> my_policy;

All we need do now is invoke the BOOST_MATH_DECLARE_DISTRIBUTIONS macro passing the floating point and policy types as arguments:

BOOST_MATH_DECLARE_DISTRIBUTIONS(double, my_policy)
}

We now have a set of typedefs defined in namespace my_namespace that all look something like this:

typedef boost::math::normal_distribution<double, my_policy> normal;
typedef boost::math::cauchy_distribution<double, my_policy> cauchy;
typedef boost::math::gamma_distribution<double, my_policy> gamma;
// etc

So that when we use my_namespace::normal we really end up using boost::math::normal_distribution<double, my_policy>:

int main()
{
 // Start with something we know will overflow:
 my_distributions::normal norm(10, 2);
 errno = 0;
 std::cout << "Result of quantile(norm, 0) is: "
 << quantile(norm, 0) << std::endl;
 std::cout << "errno = " << errno << std::endl;
 errno = 0;
 std::cout << "Result of quantile(norm, 1) is: "
 << quantile(norm, 1) << std::endl;
 std::cout << "errno = " << errno << std::endl;
 // Now try a discrete distribution:
 my_distributions::binomial binom(20, 0.25);
 std::cout << "Result of quantile(binom, 0.05) is: "
 << quantile(binom, 0.05) << std::endl;
 std::cout << "Result of quantile(complement(binom, 0.05)) is: "
 << quantile(complement(binom, 0.05)) << std::endl;
}

Which outputs:
Result of quantile(norm, 0) is: -1.#INF
erro = 34
Result of quantile(norm, 1) is: 1.#INF
erro = 34
Result of quantile(binom, 0.05) is: 1
Result of quantile(complement(binom, 0.05)) is: 8

This mechanism is particularly useful when we want to define a project-wide policy, and don't want to modify the Boost source or set - possibly fragile and easy to forget - project wide build macros.

Note

There is an important limitation to note: you can not use the macros `BOOST_MATH_DECLARE_DISTRIBUTIONS` and `BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS in the same namespace`, as doing so creates ambiguities between functions and distributions of the same name.

As before, the same mechanism works well at file scope as well: by using an unnamed namespace, we can ensure that these declarations don't conflict with any alternate policies present in other translation units:
#include <boost/math/distributions.hpp>

namespace {

using namespace boost::math::policies;

typedef policy<
 // return infinity and set errno rather than throw:
 overflow_error<errno_on_error>,
 // Don't promote double -> long double internally:
 promote_double<false>,
 // Return the closest integer result for discrete quantiles:
 discrete_quantile<integer_round_nearest>
> my_policy;

BOOST_MATH_DECLARE_DISTRIBUTIONS(double, my_policy)
}

} // close namespace my_namespace

int main()
{
 // Start with something we know will overflow:
 // normal norm(10, 2);
 errno = 0;
 std::cout << "Result of quantile(norm, 0) is: " << quantile(norm, 0) << std::endl;
 std::cout << "errno = " << errno << std::endl;
 errno = 0;
 std::cout << "Result of quantile(norm, 1) is: " << quantile(norm, 1) << std::endl;
 std::cout << "errno = " << errno << std::endl;
 // Now try a discrete distribution:
 // binomial binom(20, 0.25);
 std::cout << "Result of quantile(binom, 0.05) is: " << quantile(binom, 0.05) << std::endl;
 std::cout << "Result of quantile(complement(binom, 0.05)) is: " << quantile(complement(binom, 0.05)) << std::endl;
}

Calling User Defined Error Handlers

Suppose we want our own user-defined error handlers rather than the any of the default ones supplied by the library to be used. If we set the policy for a specific type of error to `user_error` then the library will call a user-supplied error handler. These are forward declared, but not defined in boost/math/policies/error_handling.hpp like this:
So our first job is to include the header we want to use, and then provide definitions for the user-defined error handlers we want to use:

```cpp
#include <iostream>
#include <boost/math/special_functions.hpp>

namespace boost{ namespace math{ namespace policies{

template <class T>
T user_domain_error(const char* function, const char* message, const T& val)
{
    std::cerr << "Domain Error." << std::endl;
    return std::numeric_limits<T>::quiet_NaN();
}

template <class T>
T user_pole_error(const char* function, const char* message, const T& val)
{
    std::cerr << "Pole Error." << std::endl;
    return std::numeric_limits<T>::quiet_NaN();
}
}} // namespaces
```

Now we'll need to define a suitable policy that will call these handlers, and define some forwarding functions that make use of the policy:

```cpp
namespace{

using namespace boost::math::policies;

typedef policy<
    domain_error<user_error>,
    pole_error<user_error>
> user_error_policy;

BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(user_error_policy)

} // close unnamed namespace
```
We now have a set of forwarding functions defined in an unnamed namespace that all look something like this:

```cpp
template <class RealType>
inline typename boost::math::tools::promote_args<RT>::type
tgamma(RT z)
{
  return boost::math::tgamma(z, user_error_policy());
}
```

So that when we call `tgamma(z)` we really end up calling `boost::math::tgamma(z, user_error_policy())`, and any errors will get directed to our own error handlers:

```cpp
int main()
{
  std::cout << "Result of erf_inv(-10) is: "
          << erf_inv(-10) << std::endl;
  std::cout << "Result of tgamma(-10) is: "
          << tgamma(-10) << std::endl;
}
```

Which outputs:

- Domain Error.
- Result of erf_inv(-10) is: 1.#QNAN
- Pole Error.
- Result of tgamma(-10) is: 1.#QNAN

The previous example was all well and good, but the custom error handlers didn't really do much of any use. In this example we'll implement all the custom handlers and show how the information provided to them can be used to generate nice formatted error messages.

Each error handler has the general form:

```cpp
template <class T>
T user_error_type(
  const char* function,
  const char* message,
  const T& val);
```

and accepts three arguments:

- `const char* function`: The name of the function that raised the error, this string contains one or more `%1%` format specifiers that should be replaced by the name of type T.

- `const char* message`: A message associated with the error, normally this contains a `%1%` format specifier that should be replaced with the value of `value`: however note that overflow and underflow messages do not contain this `%1%` specifier (since the value of `value` is immaterial in these cases).

- `const T& value`: The value that caused the error: either an argument to the function if this is a domain or pole error, the tentative result if this is a denorm or evaluation error, or zero or infinity for underflow or overflow errors.

As before we'll include the headers we need first:

```cpp
#include <iostream>
#include <boost/math/special_functions.hpp>
```
Next we’ll implement the error handlers for each type of error, starting with domain errors:

```cpp
namespace boost { namespace math { namespace policies {

    template <class T>
    T user_domain_error(const char* function, const char* message, const T& val)
    {
        We’ll begin with a bit of defensive programming:

        if (function == 0)
            function = "Unknown function with arguments of type %1%";
        if (message == 0)
            message = "Cause unknown with bad argument %1%";

        Next we’ll format the name of the function with the name of type T:

        std::string msg("Error in function ");
        msg += (boost::format(function) % typeid(T).name()).str();

        Then likewise format the error message with the value of parameter val, making sure we output all the digits of val:

        msg += "\n";
        int prec = 2 + (std::numeric_limits<T>::digits * 30103UL) / 100000UL;
        msg += (boost::format(message) % boost::io::group(std::setprecision(prec), val)).str();

        Now we just have to do something with the message, we could throw an exception, but for the purposes of this example we’ll just dump the message to std::cerr:

        std::cerr << msg << std::endl;

        Finally the only sensible value we can return from a domain error is a NaN:

        return std::numeric_limits<T>::quiet_NaN();
    }

    Pole errors are essentially a special case of domain errors, so in this example we’ll just return the result of a domain error:

    template <class T>
    T user_pole_error(const char* function, const char* message, const T& val)
    {
        return user_domain_error(function, message, val);
    }

    Overflow errors are very similar to domain errors, except that there’s no %1% format specifier in the message parameter:

    template <class T>
    T user_overflow_error(const char* function, const char* message, const T& val)
    {
        return user_domain_error(function, message, val);
    }
```
template <class T>
T user_overflow_error(const char* function, const char* message, const T& val)
{
 if(function == 0)
 function = "Unknown function with arguments of type %1%";
 if(message == 0)
 message = "Result of function is too large to represent";

 std::string msg("Error in function ");
 msg += (boost::format(function) % typeid(T).name()).str();
 msg += ":
 msg += message;

 std::cerr << msg << std::endl;
 // Value passed to the function is an infinity, just return it:
 return val;
}

Underflow errors are much the same as overflow:

template <class T>
T user_underflow_error(const char* function, const char* message, const T& val)
{
 if(function == 0)
 function = "Unknown function with arguments of type %1%";
 if(message == 0)
 message = "Result of function is too small to represent";

 std::string msg("Error in function ");
 msg += (boost::format(function) % typeid(T).name()).str();
 msg += ":
 msg += message;

 std::cerr << msg << std::endl;
 // Value passed to the function is zero, just return it:
 return val;
}

Denormalised results are much the same as underflow:
template <class T>
T user_denorm_error(const char* function, const char* message, const T& val)
{
 if(function == 0)
 function = "Unknown function with arguments of type %1";
 if(message == 0)
 message = "Result of function is denormalised";

 std::string msg("Error in function ");
 msg += (boost::format(function) % typeid(T).name()).str();
 msg += ":
 msg += message;
 std::cerr << msg << std::endl;
 // Value passed to the function is denormalised, just return it:
 return val;
}

Which leaves us with evaluation errors, these occur when an internal error occurs that prevents the function being fully evaluated. The parameter val contains the closest approximation to the result found so far:

template <class T>
T user_evaluation_error(const char* function, const char* message, const T& val)
{
 if(function == 0)
 function = "Unknown function with arguments of type %1";
 if(message == 0)
 message = "An internal evaluation error occurred with
 "the best value calculated so far of %1";

 std::string msg("Error in function ");
 msg += (boost::format(function) % typeid(T).name()).str();
 msg += ":
 int prec = 2 + (std::numeric_limits<T>::digits * 30103UL) / 100000UL;
 msg += (boost::format(message) % boost::io::group(std::setprecision(prec), val)).str();
 std::cerr << msg << std::endl;
 // What do we return here? This is generally a fatal error,
 // that should never occur, just return a NaN for the purposes
 // of the example:
 return std::numeric_limits<T>::quiet_NaN();
}

Now we'll need to define a suitable policy that will call these handlers, and define some forwarding functions that make use of the policy:
namespace{

using namespace boost::math::policies;

typedef policy<
 domain_error<user_error>,
 pole_error<user_error>,
 overflow_error<user_error>,
 underflow_error<user_error>,
 denorm_error<user_error>,
 evaluation_error<user_error>
> user_error_policy;

BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(user_error_policy)

} // close unnamed namespace

We now have a set of forwarding functions defined in an unnamed namespace that all look something like this:

template <class RealType>
inline typename boost::math::tools::promote_args<RT>::type
tgamma(RT z)
{
 return boost::math::tgamma(z, user_error_policy());
}

So that when we call \texttt{tgamma(z)} we really end up calling \texttt{boost::math::tgamma(z, user_error_policy())}, and any errors will get directed to our own error handlers:

\begin{lstlisting}
int main()
{
 // Raise a domain error:
 std::cout << "Result of erf_inv(-10) is: "
 << erf_inv(-10) << std::endl << std::endl;
 // Raise a pole error:
 std::cout << "Result of tgamma(-10) is: "
 << tgamma(-10) << std::endl << std::endl;
 // Raise an overflow error:
 std::cout << "Result of tgamma(3000) is: "
 << tgamma(3000) << std::endl << std::endl;
 // Raise an underflow error:
 std::cout << "Result of tgamma(-190.5) is: "
 << tgamma(-190.5) << std::endl << std::endl;
 // Unfortunately we can't predicably raise a denormalised
 // result, nor can we raise an evaluation error in this example
 // since these should never really occur!
}
\end{lstlisting}

Which outputs:
Notice how some of the calls result in an error handler being called more than once, or for more than one handler to be called: this is an artefact of the fact that many functions are implemented in terms of one or more sub-routines each of which may have its own error handling. For example \(\text{tgamma}(-190.5) \) is implemented in terms of \(\text{tgamma}(190.5) \) - which overflows - the reflection formula for \(\text{tgamma} \) then notices that it's dividing by infinity and underflows.

Understanding Quantiles of Discrete Distributions

Discrete distributions present us with a problem when calculating the quantile: we are starting from a continuous real-valued variable - the probability - but the result (the value of the random variable) should really be discrete.

Consider for example a Binomial distribution, with a sample size of 50, and a success fraction of 0.5. There are a variety of ways we can plot a discrete distribution, but if we plot the PDF as a step-function then it looks something like this:
Now let's suppose that the user asks for the quantile that corresponds to a probability of 0.05, if we zoom in on the CDF for that region here's what we see:
As can be seen there is no random variable that corresponds to a probability of exactly 0.05, so we're left with two choices as shown in the figure:

- We could round the result down to 18.
- We could round the result up to 19.

In fact there's actually a third choice as well: we could "pretend" that the distribution was continuous and return a real valued result: in this case we would calculate a result of approximately 18.701 (this accurately reflects the fact that the result is nearer to 19 than 18).

By using policies we can offer any of the above as options, but that still leaves the question: What is actually the right thing to do? And in particular: What policy should we use by default?

In coming to an answer we should realise that:

- Calculating an integer result is often much faster than calculating a real-valued result: in fact in our tests it was up to 20 times faster.
- Normally people calculate quantiles so that they can perform a test of some kind: "If the random variable is less than N then we can reject our null-hypothesis with 90% confidence."
So there is a genuine benefit to calculating an integer result as well as it being "the right thing to do" from a philosophical point of view. What's more if someone asks for a quantile at 0.05, then we can normally assume that they are asking for **at least 95% of the probability to the right of the value chosen, and no more than 5% of the probability to the left of the value chosen.**

In the above binomial example we would therefore round the result down to 18.

The converse applies to upper-quantiles: If the probability is greater than 0.5 we would want to round the quantile up, so that **at least the requested probability is to the left of the value returned, and no more than 1 - the requested probability is to the right of the value returned.**

Likewise for two-sided intervals, we would round lower quantiles down, and upper quantiles up. This ensures that we have **at least the requested probability in the central region and no more than 1 minus the requested probability in the tail areas.**

For example, taking our 50 sample binomial distribution with a success fraction of 0.5, if we wanted a two sided 90% confidence interval, then we would ask for the 0.05 and 0.95 quantiles with the results **rounded outwards so that at least 90% of the probability is in the central area:**

![Binomial Distribution Graph](image)

So far so good, but there is in fact a trap waiting for the unwary here:

```cpp
quantile(binomial(50, 0.5), 0.05);
```

returns 18 as the result, which is what we would expect from the graph above, and indeed there is no x greater than 18 for which:
However:
\[
\text{quantile}(\text{binomial}(50, 0.5), 0.95);
\]
returns 31, and indeed while there is no \(x\) less than 31 for which:
\[
\text{cdf}(\text{binomial}(50, 0.5), x) \geq 0.95;
\]
We might naively expect that for this symmetrical distribution the result would be 32 (since 32 = 50 - 18), but we need to remember that the cdf of the binomial is inclusive of the random variable. So while the left tail area includes the quantile returned, the right tail area always excludes an upper quantile value: since that "belongs" to the central area.

Look at the graph above to see what's going on here: the lower quantile of 18 belongs to the left tail, so any value \(\leq 18\) is in the left tail. The upper quantile of 31 on the other hand belongs to the central area, so the tail area actually starts at 32, so any value \(> 31\) is in the right tail.

Therefore if \(U\) and \(L\) are the upper and lower quantiles respectively, then a random variable \(X\) is in the tail area - where we would reject the null hypothesis if:
\[
X \leq L \land X > U
\]
And the a variable \(X\) is inside the central region if:
\[
L < X \leq U
\]
The moral here is to always be very careful with your comparisons when dealing with a discrete distribution, and if in doubt, base your comparisons on CDF's instead.

Other Rounding Policies are Available

As you would expect from a section on policies, you won't be surprised to know that other rounding options are available:

- **integer_round_outwards**: This is the default policy as described above: lower quantiles are rounded down (probability \(< 0.5\)), and upper quantiles (probability \(> 0.5\)) are rounded up.

 This gives no more than the requested probability in the tails, and at least the requested probability in the central area.

- **integer_round_inwards**: This is the exact opposite of the default policy: lower quantiles are rounded up (probability \(< 0.5\)), and upper quantiles (probability \(> 0.5\)) are rounded down.

 This gives at least the requested probability in the tails, and no more than the requested probability in the central area.

- **integer_round_down**: This policy will always round the result down no matter whether it is an upper or lower quantile.

- **integer_round_up**: This policy will always round the result up no matter whether it is an upper or lower quantile.

- **integer_round_nearest**: This policy will always round the result to the nearest integer no matter whether it is an upper or lower quantile.

- **real**: This policy will return a real valued result for the quantile of a discrete distribution: this is generally much slower than finding an integer result but does allow for more sophisticated rounding policies.
To understand how the rounding policies for the discrete distributions can be used, we'll use the 50-sample binomial distribution with a success fraction of 0.5 once again, and calculate all the possible quantiles at 0.05 and 0.95.

Begin by including the needed headers:

```cpp
#include <iostream>
#include <boost/math/distributions/binomial.hpp>
```

Next we'll bring the needed declarations into scope, and define distribution types for all the available rounding policies:

```cpp
using namespace boost::math::policies;
using namespace boost::math;

typedef binomial_distribution<
    double,
    policy<discrete_quantile<integer_round_outwards> > >
binom_round_outwards;

typedef binomial_distribution<
    double,
    policy<discrete_quantile<integer_round_inwards> > >
binom_round_inwards;

typedef binomial_distribution<
    double,
    policy<discrete_quantile<integer_round_down> > >
binom_round_down;

typedef binomial_distribution<
    double,
    policy<discrete_quantile<integer_round_up> > >
binom_round_up;

typedef binomial_distribution<
    double,
    policy<discrete_quantile<integer_round_nearest> > >
binom_round_nearest;

typedef binomial_distribution<
    double,
    policy<discrete_quantile<real> > >
binom_real_quantile;
```

Now let's set to work calling those quantiles:
```cpp
int main()
{
    std::cout <<
        "Testing rounding policies for a 50 sample binomial distribution,
        "
        "with a success fraction of 0.5.\n\n"
        "Lower quantiles are calculated at p = 0.05\n\n"
        "Upper quantiles at p = 0.95.\n\n"
;
    std::cout << std::setw(25) << std::right
        << "Policy" << std::setw(18) << std::right
        << "Lower Quantile" << std::setw(18) << std::right
        << "Upper Quantile" << std::endl;

    // Test integer_round_outwards:
    std::cout << std::setw(25) << std::right
        << "integer_round_outwards"
        << std::setw(18) << std::right
        << quantile(binom_round_outwards(50, 0.5), 0.05)
        << std::setw(18) << std::right
        << quantile(binom_round_outwards(50, 0.5), 0.95)
        << std::endl;

    // Test integer_round_inwards:
    std::cout << std::setw(25) << std::right
        << "integer_round_inwards"
        << std::setw(18) << std::right
        << quantile(binom_round_inwards(50, 0.5), 0.05)
        << std::setw(18) << std::right
        << quantile(binom_round_inwards(50, 0.5), 0.95)
        << std::endl;

    // Test integer_round_down:
    std::cout << std::setw(25) << std::right
        << "integer_round_down"
        << std::setw(18) << std::right
        << quantile(binom_round_down(50, 0.5), 0.05)
        << std::setw(18) << std::right
        << quantile(binom_round_down(50, 0.5), 0.95)
        << std::endl;

    // Test integer_round_up:
    std::cout << std::setw(25) << std::right
        << "integer_round_up"
        << std::setw(18) << std::right
        << quantile(binom_round_up(50, 0.5), 0.05)
        << std::setw(18) << std::right
        << quantile(binom_round_up(50, 0.5), 0.95)
        << std::endl;

    // Test integer_round_nearest:
    std::cout << std::setw(25) << std::right
        << "integer_round_nearest"
        << std::setw(18) << std::right
        << quantile(binom_round_nearest(50, 0.5), 0.05)
        << std::setw(18) << std::right
        << quantile(binom_round_nearest(50, 0.5), 0.95)
        << std::endl;

    // Test real:
    std::cout << std::setw(25) << std::right
        << "real"
        
```

Which produces the program output:

Testing rounding policies for a 50 sample binomial distribution, with a success fraction of 0.5.

Lower quantiles are calculated at p = 0.05

Upper quantiles at p = 0.95.

Testing rounding policies for a 50 sample binomial distribution, with a success fraction of 0.5.

Lower quantiles are calculated at p = 0.05

Upper quantiles at p = 0.95.

<table>
<thead>
<tr>
<th>Policy</th>
<th>Lower Quantile</th>
<th>Upper Quantile</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer_round_outwards</td>
<td>18</td>
<td>31</td>
</tr>
<tr>
<td>integer_round_inwards</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>integer_round_down</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>integer_round_up</td>
<td>19</td>
<td>31</td>
</tr>
<tr>
<td>integer_round_nearest</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>real</td>
<td>18.701</td>
<td>30.299</td>
</tr>
</tbody>
</table>

Policy Reference

Error Handling Policies

There are two orthogonal aspects to error handling:

• What to do (if anything) with the error.
• What kind of error is being raised.

Available Actions When an Error is Raised

What to do with the error is encapsulated by an enumerated type:

```cpp
namespace boost { namespace math { namespace policies {
  enum error_policy_type
  {
    throw_on_error = 0, // throw an exception.
    errno_on_error = 1, // set ::errno & return 0, NaN, infinity or best guess.
    ignore_error = 2, // return 0, NaN, infinity or best guess.
    user_error = 3 // call a user-defined error handler.
  }
}} // namespaces
```

The various enumerated values have the following meanings:
throw_on_error

Will throw one of the following exceptions, depending upon the type of the error:

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Exception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Error</td>
<td>std::domain_error</td>
</tr>
<tr>
<td>Pole Error</td>
<td>std::domain_error</td>
</tr>
<tr>
<td>Overflow Error</td>
<td>std::overflow_error</td>
</tr>
<tr>
<td>Underflow Error</td>
<td>std::underflow_error</td>
</tr>
<tr>
<td>Denorm Error</td>
<td>std::underflow_error</td>
</tr>
<tr>
<td>Evaluation Error</td>
<td>boost::math::evaluation_error</td>
</tr>
<tr>
<td>Indeterminate Result Error</td>
<td>std::domain_error</td>
</tr>
</tbody>
</table>

errno_on_error

Will set global ::errno to one of the following values depending upon the error type, and then return the same value as if the error had been ignored:

<table>
<thead>
<tr>
<th>Error Type</th>
<th>errno value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Error</td>
<td>EDOM</td>
</tr>
<tr>
<td>Pole Error</td>
<td>EDOM</td>
</tr>
<tr>
<td>Overflow Error</td>
<td>ERANGE</td>
</tr>
<tr>
<td>Underflow Error</td>
<td>ERANGE</td>
</tr>
<tr>
<td>Denorm Error</td>
<td>ERANGE</td>
</tr>
<tr>
<td>Evaluation Error</td>
<td>EDOM</td>
</tr>
<tr>
<td>Indeterminate Result Error</td>
<td>EDOM</td>
</tr>
</tbody>
</table>

ignore_error

Will return one of the values below depending on the error type (:errno is NOT changed):
<table>
<thead>
<tr>
<th>Error Type</th>
<th>Returned Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Error</td>
<td>std::numeric_limits<T>::quiet_NaN()</td>
</tr>
<tr>
<td>Pole Error</td>
<td>std::numeric_limits<T>::quiet_NaN()</td>
</tr>
<tr>
<td>Overflow Error</td>
<td>std::numeric_limits<T>::infinity()</td>
</tr>
<tr>
<td>Underflow Error</td>
<td>0</td>
</tr>
<tr>
<td>Denorm Error</td>
<td>The denormalised value</td>
</tr>
<tr>
<td>Evaluation Error</td>
<td>The best guess as to the result: which may be significantly in error.</td>
</tr>
<tr>
<td>Indeterminate Result Error</td>
<td>Depends on the function where the error occurred</td>
</tr>
</tbody>
</table>

user_error

Will call a user defined error handler: these are forward declared in boost/math/policies/error_handling.hpp, but the actual definitions must be provided by the user:

```cpp
namespace boost { namespace math { namespace policies {

    template <class T>
    T user_domain_error(const char* function, const char* message, const T& val);

    template <class T>
    T user_pole_error(const char* function, const char* message, const T& val);

    template <class T>
    T user_overflow_error(const char* function, const char* message, const T& val);

    template <class T>
    T user_underflow_error(const char* function, const char* message, const T& val);

    template <class T>
    T user_denorm_error(const char* function, const char* message, const T& val);

    template <class T>
    T user_rounding_error(const char* function, const char* message, const T& val);

    template <class T>
    T user_evaluation_error(const char* function, const char* message, const T& val);

    template <class T>
    T user_indeterminate_result_error(const char* function, const char* message, const T& val);

}} // namespaces
```

Note that the strings `function` and `message` may contain "%1%" format specifiers designed to be used in conjunction with Boost.Format. If these strings are to be presented to the program's end-user then the "%1%" format specifier should be replaced with the name of type `T` in the `function` string, and if there is a %1% specifier in the `message` string then it should be replaced with the value of `val`.

There is more information on user-defined error handlers in the tutorial here.

Kinds of Error Raised

There are six kinds of error reported by this library, which are summarised in the following table:
<table>
<thead>
<tr>
<th>Error Type</th>
<th>Policy Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Error</td>
<td><code>boost::math::policies::domain_error<action></code></td>
<td>Raised when more or more arguments are outside the defined range of the function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defaults to <code>boost::math::policies::domain_error<throw_on_error></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When the action is set to <code>throw_on_error</code> then throws <code>std::domain_error</code></td>
</tr>
<tr>
<td>Pole Error</td>
<td><code>boost::math::policies::pole_error<action></code></td>
<td>Raised when more or more arguments would cause the function to be evaluated at a pole.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defaults to <code>boost::math::policies::pole_error<throw_on_error></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When the action is <code>throw_on_error</code> then throw a <code>std::domain_error</code></td>
</tr>
<tr>
<td>Overflow Error</td>
<td><code>boost::math::policies::overflow_error<action></code></td>
<td>Raised when the result of the function is outside the representable range of the floating point type used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defaults to <code>boost::math::policies::overflow_error<throw_on_error></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When the action is <code>throw_on_error</code> then throws a <code>std::overflow_error</code></td>
</tr>
<tr>
<td>Underflow Error</td>
<td><code>boost::math::policies::underflow_error<action></code></td>
<td>Raised when the result of the function is too small to be represented in the floating point type used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defaults to <code>boost::math::policies::underflow_error<ignore_error></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When the specified action is <code>throw_on_error</code> then throws a <code>std::underflow_error</code></td>
</tr>
<tr>
<td>Denorm Error</td>
<td><code>boost::math::policies::denorm_error<action></code></td>
<td>Raised when the result of the function is a denormalised value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defaults to <code>boost::math::policies::denorm_error<ignore_error></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When the action is <code>throw_on_error</code> then throws a <code>std::underflow_error</code></td>
</tr>
<tr>
<td>Rounding Error</td>
<td><code>boost::math::policies::rounding_error<action></code></td>
<td>Raised When one of the rounding functions <code>round</code>, <code>trunc</code> or <code>modf</code> is called with an argument that has no integer representation, or is too large to be represented in the result type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defaults to <code>boost::math::policies::rounding_error<throw_on_error></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When the action is <code>throw_on_error</code> then throws <code>boost::math::rounding_error</code></td>
</tr>
</tbody>
</table>
Error Type | Policy Class | Description
---|---|---
Evaluation Error | `boost::math::policies::evaluation_error<action>` | Raised when the result of the function is well defined and finite, but we were unable to compute it. Typically this occurs when an iterative method fails to converge. Of course ideally this error should never be raised: feel free to report it as a bug if it is!

Defaults to `boost::math::policies::evaluation_error<throw_on_error>`

When the action is `throw_on_error` then throws `boost::math::evaluation_error`.

Indeterminate Result Error | `boost::math::policies::indeterminate_result_error<action>` | Raised when the result of a function is not defined for the values that were passed to it.

Defaults to `boost::math::policies::indeterminate_result_error<ignore_error>`

When the action is `throw_on_error` then throws `std::domain_error`.

Examples

Suppose we want a call to `tgamma` to behave in a C-compatible way and set global ::`errno` rather than throw an exception, we can achieve this at the call site using:

```cpp
#include <boost/math/special_functions/gamma.hpp>
using namespace boost::math::policies;
using namespace boost::math;

// Define a policy:
typedef policy<
   domain_error<errno_on_error>,
   pole_error<errno_on_error>,
   overflow_error<errno_on_error>,
   policies::evaluation_error<errno_on_error>
> my_policy;

// call the function:
double t1 = tgamma(some_value, my_policy());

// Alternatively we could use make_policy and define everything at the call site:
double t2 = tgamma(some_value, make_policy(
   domain_error<errno_on_error>(),
   pole_error<errno_on_error>(),
   overflow_error<errno_on_error>(),
   policies::evaluation_error<errno_on_error>());
```

Suppose we want a statistical distribution to return infinities, rather than throw exceptions, then we can use:
```cpp
#include <boost/math/distributions/normal.hpp>
using namespace boost::math::policies;
using namespace boost::math;

// Define a policy:
typedef policy<
    overflow_error<ignore_error>
> my_policy;

// Define the distribution:
typedef normal_distribution<double, my_policy> my_norm;

// Get a quantile:
double q = quantile(my_norm(), 0.05);
```

Internal Promotion Policies

Normally when evaluating a function at say `float` precision, maximal accuracy is assured by conducting the calculation at `double` precision internally, and then rounding the result. There are two policies that effect whether internal promotion takes place or not:

<table>
<thead>
<tr>
<th>Policy</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>boost::math::policies::promote_float</code></td>
<td>Indicates whether <code>float</code> arguments should be promoted to <code>double</code> precision internally: defaults to <code>boost::math::policies::promote_float<true></code></td>
</tr>
<tr>
<td><code>boost::math::policies::promote_double</code></td>
<td>Indicates whether <code>double</code> arguments should be promoted to <code>long double</code> precision internally: defaults to <code>boost::math::policies::promote_double<true></code></td>
</tr>
</tbody>
</table>

Examples

Suppose we want `tgamma` to be evaluated without internal promotion to `long double`, then we could use:

```cpp
#include <boost/math/special_functions/gamma.hpp>
using namespace boost::math::policies;
using namespace boost::math;

// Define a policy:
typedef policy<
    promote_double<false>
> my_policy;

// Call the function:
double t1 = tgamma(some_value, my_policy());

// Alternatively we could use make_policy and define everything at the call site:
double t2 = tgamma(some_value, make_policy(promote_double<false>()));
```

Alternatively, suppose we want a distribution to perform calculations without promoting `float` to `double`, then we could use:

```cpp
```
#include <boost/math/distributions/normal.hpp>

using namespace boost::math::policies;
using namespace boost::math;

// Define a policy:
typedef policy<
promote_float<false>
> my_policy;

// Define the distribution:
typedef normal_distribution<float, my_policy> my_norm;

// Get a quantile:
float q = quantile(my_norm(), 0.05f);

Mathematically Undefined Function Policies

There are some functions that are generic (they are present for all the statistical distributions supported) but which may be mathematically undefined for certain distributions, but defined for others.

For example, the Cauchy distribution does not have a mean, so what should

```
mean(cauchy<>());
```

return, and should such an expression even compile at all?

The default behaviour is for all such functions to not compile at all - in fact they will raise a static assertion - but by changing the policy we can have them return the result of a domain error instead (which may well throw an exception, depending on the error handling policy).

This behaviour is controlled by the assert_undefined<> policy:

```
namespace boost{ namespace math{ namespace policies {

template <bool b> class assert_undefined;

}}}
```

For example:

```
#include <boost/math/distributions/cauchy.hpp>

using namespace boost::math::policies;
using namespace boost::math;

// This will not compile, cauchy has no mean!
double m1 = mean(cauchy());

// This will compile, but raises a domain error!
double m2 = mean(cauchy_distribution<double, policy<assert_undefined<false> > > (;;));
```

Discrete Quantile Policies

If a statistical distribution is discrete then the random variable can only have integer values - this leaves us with a problem when calculating quantiles - we can either ignore the discreteness of the distribution and return a real value, or we can round to an integer.
As it happens, computing integer values can be substantially faster than calculating a real value, so there are definite advantages to returning an integer, but we do then need to decide how best to round the result. The `discrete_quantile` policy defines how discrete quantiles work, and how integer results are rounded:

```cpp
enum discrete_quantile_policy_type
{
    real,
    integer_round_outwards, // default
    integer_round_inwards,
    integer_round_down,
    integer_round_up,
    integer_round_nearest
};
template <discrete_quantile_policy_type>
struct discrete_quantile;
```

The values that `discrete_quantile` can take have the following meanings:

real

Ignores the discreteness of the distribution, and returns a real-valued result. For example:

```cpp
#include <boost/math/distributions/negative_binomial.hpp>
using namespace boost::math;
using namespace boost::math::policies;
typedef negative_binomial_distribution<
    double,
    policy<discrete_quantile<integer_round_inwards> >
> dist_type;

// Lower quantile:
double x = quantile(dist_type(20, 0.3), 0.05);
// Upper quantile:
double y = quantile(complement(dist_type(20, 0.3), 0.05));
```

Results in $x = 27.3898$ and $y = 68.1584$.

integer_round_outwards

This is the default policy: an integer value is returned so that:

- Lower quantiles (where the probability is less than 0.5) are rounded down.
- Upper quantiles (where the probability is greater than 0.5) are rounded up.

This is normally the safest rounding policy, since it ensures that both one and two sided intervals are guaranteed to have *at least* the requested coverage. For example:
#include <boost/math/distributions/negative_binomial.hpp>
using namespace boost::math;

// Lower quantile rounded down:
double x = quantile(negative_binomial(20, 0.3), 0.05);
// Upper quantile rounded up:
double y = quantile(complement(negative_binomial(20, 0.3), 0.05));

Results in \(x = 27 \) (rounded down from 27.3898) and \(y = 69 \) (rounded up from 68.1584).

The variables \(x \) and \(y \) are now defined so that:

\[
\text{cdf(negative_binomial}(20), x) \leq 0.05 \\
\text{cdf(negative_binomial}(20), y) \geq 0.95
\]

In other words we guarantee at least 90\% coverage in the central region overall, and also no more than 5\% coverage in each tail.

integer_round_inwards

This is the opposite of **integer_round_outwards**: an integer value is returned so that:

- Lower quantiles (where the probability is less than 0.5) are rounded up.
- Upper quantiles (where the probability is greater than 0.5) are rounded down.

For example:

```cpp
#include <boost/math/distributions/negative_binomial.hpp>
using namespace boost::math;
using namespace boost::math::policies;
typedef negative_binomial_distribution<
    double,
    policy<discrete_quantile<integer_round_inwards> >
> dist_type;
// Lower quantile rounded up:
double x = quantile(dist_type(20, 0.3), 0.05);
// Upper quantile rounded down:
double y = quantile(complement(dist_type(20, 0.3), 0.05));

Results in \( x = 28 \) (rounded up from 27.3898) and \( y = 68 \) (rounded down from 68.1584).

The variables \( x \) and \( y \) are now defined so that:

\[
\text{cdf(negative_binomial}(20), x) \geq 0.05 \\
\text{cdf(negative_binomial}(20), y) \leq 0.95
\]

In other words we guarantee at no more than 90\% coverage in the central region overall, and also at least 5\% coverage in each tail.

**integer_round_down**

Always rounds down to an integer value, no matter whether it’s an upper or a lower quantile.
**integer_round_up**

Always rounds up to an integer value, no matter whether it's an upper or a lower quantile.

**integer_round_nearest**

Always rounds to the nearest integer value, no matter whether it's an upper or a lower quantile. This will produce the requested coverage *in the average case*, but for any specific example may results in either significantly more or less coverage than the requested amount. For example:

For example:

```cpp
#include <boost/math/distributions/negative_binomial.hpp>

using namespace boost::math;
using namespace boost::math::policies;

typedef negative_binomial_distribution<
 double,
 policy<discrete_quantile<integer_round_nearest> >
> dist_type;

// Lower quantile rounded up:
double x = quantile(dist_type(20, 0.3), 0.05);
// Upper quantile rounded down:
double y = quantile(complement(dist_type(20, 0.3), 0.05));
```

Results in $x = 27$ (rounded from 27.3898) and $y = 68$ (rounded from 68.1584).

**Precision Policies**

There are two equivalent policies that effect the *working precision* used to calculate results, these policies both default to 0 - meaning calculate to the maximum precision available in the type being used - but can be set to other values to cause lower levels of precision to be used.

```cpp
namespace boost { namespace math { namespace policies {

 template <int N>
 digits10;

 template <int N>
 digits2;

}} // namespaces
```

As you would expect, *digits10* specifies the number of decimal digits to use, and *digits2* the number of binary digits. Internally, whichever is used, the precision is always converted to *binary digits*.

These policies are specified at compile-time, because many of the special functions use compile-time-dispatch to select which approximation to use based on the precision requested and the numeric type being used.

For example we could calculate $\Gamma$ to approximately 5 decimal digits using:
```cpp
#include <boost/math/special_functions/gamma.hpp>

using namespace boost::math;
using namespace boost::math::policies;

typedef policy<digits10<5> > pol;
double t = tgamma(12, pol());

Or again using `make_policy`:

```cpp
#include <boost/math/special_functions/gamma.hpp>

using namespace boost::math;
using namespace boost::math::policies;
double t = tgamma(12, policy<digits10<5> >());
```

And for a quantile of a distribution to approximately 25-bit precision:

```cpp
#include <boost/math/distributions/normal.hpp>

using namespace boost::math;
using namespace boost::math::policies;
double q = quantile(
    normal_distribution<double, policy<digits2<25> > >(),
    0.05);
```

Iteration Limits Policies

There are two policies that effect the iterative algorithms used to implement the special functions in this library:

```cpp
template <unsigned long limit = BOOST_MATH_MAX_SERIES_ITERATION_POLICY>
class max_series_iterations;

template <unsigned long limit = BOOST_MATH_MAX_ROOT_ITERATION_POLICY>
class max_root_iterations;
```

The class `max_series_iterations` determines the maximum number of iterations permitted in a series evaluation, before the special function gives up and returns the result of `evaluation_error`.

The class `max_root_iterations` determines the maximum number of iterations permitted in a root-finding algorithm before the special function gives up and returns the result of `evaluation_error`.

Using macros to Change the Policy Defaults

You can use the various macros below to change any (or all) of the policies.

You can make a local change by placing a macro definition `before` a function or distribution `#include`.
Caution

There is a danger of One-Definition-Rule violations if you add ad-hock macros to more than one source files: these must be set the same in every translation unit.

Caution

If you place it after the #include it will have no effect, (and it will affect only any other following #includes). This is probably not what you intend!

If you want to alter the defaults for any or all of the policies for all functions and distributions, installation-wide, then you can do so by defining various macros in boost/math/tools/user.hpp.

BOOST_MATH_DOMAIN_ERROR_POLICY

Defines what happens when a domain error occurs, if not defined then defaults to throw_on_error, but can be set to any of the enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_POLE_ERROR_POLICY

Defines what happens when a pole error occurs, if not defined then defaults to throw_on_error, but can be set to any of the enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_OVERFLOW_ERROR_POLICY

Defines what happens when an overflow error occurs, if not defined then defaults to throw_on_error, but can be set to any of the enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_ROUNDING_ERROR_POLICY

Defines what happens when a rounding error occurs, if not defined then defaults to throw_on_error, but can be set to any of the enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_EVALUATION_ERROR_POLICY

Defines what happens when an internal evaluation error occurs, if not defined then defaults to throw_on_error, but can be set to any of the enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_UNDERFLOW_ERROR_POLICY

Defines what happens when an underflow error occurs, if not defined then defaults to ignore_error, but can be set to any of the enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_DENORM_ERROR_POLICY

Defines what happens when a denormalisation error occurs, if not defined then defaults to ignore_error, but can be set to any of the enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.

BOOST_MATH_INDETERMINATE_RESULT_ERROR_POLICY

Defines what happens when the result is indeterminate, but where there is none the less a convention for the result. If not defined then defaults to ignore_error, but can be set to any of the enumerated actions for error handing: throw_on_error, errno_on_error, ignore_error or user_error.
BOOST_MATH_DIGITS10_POLICY

Defines how many decimal digits to use in internal computations: defaults to 0 - meaning use all available digits - but can be set to some other decimal value. Since setting this is likely to have a substantial impact on accuracy, it's not generally recommended that you change this from the default.

BOOST_MATH_PROMOTE_FLOAT_POLICY

Determines whether float types get promoted to double internally to ensure maximum precision in the result, defaults to true, but can be set to false to turn promotion of float’s off.

BOOST_MATH_PROMOTE_DOUBLE_POLICY

Determines whether double types get promoted to long double internally to ensure maximum precision in the result, defaults to true, but can be set to false to turn promotion of double’s off.

BOOST_MATH_DISCRETE_QUANTILE_POLICY

Determines how discrete quantiles return their results: either as an integer, or as a real value, can be set to one of the enumerated values: real, integer_round_outwards, integer_round_inwards, integer_round_down, integer_round_up, integer_round_nearest. Defaults to integer_round_outwards.

BOOST_MATH_ASSERT_UNDEFINED_POLICY

Determines whether functions that are mathematically undefined for a specific distribution compile or raise a static (i.e. compile-time) assertion. Defaults to true: meaning that any mathematically undefined function will not compile. When set to false then the function will compile but return the result of a domain error: this can be useful for some generic code, that needs to work with all distributions and determine at runtime whether or not a particular property is well defined.

BOOST_MATH_MAX_SERIES_ITERATION_POLICY

Determined how many series iterations a special function is permitted to perform before it gives up and returns an evaluation_error: Defaults to 1000000.

BOOST_MATH_MAX_ROOT_ITERATION_POLICY

Determines how many root-finding iterations a special function is permitted to perform before it gives up and returns an evaluation_error: Defaults to 200.

Example

Suppose we want overflow errors to set ::errno and return an infinity, discrete quantiles to return a real-valued result (rather than round to integer), and for mathematically undefined functions to compile, but return a domain error. Then we could add the following to boost/math/tools/user.hpp:

```cpp
#define BOOST_MATH_OVERFLOW_ERROR_POLICY errno_on_error
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
#define BOOST_MATH_ASSERT_UNDEFINED_POLICY false
```

or we could place these definitions before

```cpp
#include <boost/math/distributions/normal.hpp>
using boost::math::normal_distribution;
```

in a source .cpp file.
Setting Policies at Namespace Scope

Sometimes what you really want to do is bring all the special functions, or all the distributions into a specific namespace-scope, along with a specific policy to use with them. There are two macros defined to assist with that:

```cpp
BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(Policy)
```

and:

```cpp
BOOST_MATH_DECLARE_DISTRIBUTIONS(Type, Policy)
```

You can use either of these macros after including any special function or distribution header. For example:

```cpp
#include <boost/math/special_functions/gamma.hpp>
namespace myspace{
  using namespace boost::math::policies;
  // Define a policy that does not throw on overflow:
  typedef policy<overflow_error<errno_on_error>> my_policy;
  // Define the special functions in this scope to use the policy:
  BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(my_policy)
}
```

In this example, using `BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS` results in a set of thin inline forwarding functions being defined:

```cpp
template <class T>
inline T tgamma(T a){ return ::boost::math::tgamma(a, mypolicy()); }

template <class T>
inline T lgamma(T a) { return ::boost::math::lgamma(a, mypolicy()); }
```

and so on. Note that while a forwarding function is defined for all the special functions, however, unless you include the specific header for the special function you use (or `boost/math/special_functions.hpp` to include everything), you will get linker errors from functions that are forward declared, but not defined.

We can do the same thing with the distributions, but this time we need to specify the floating-point type to use:

```cpp
#include <boost/math/distributions/normal.hpp>
namespace myspace {
  using namespace boost::math::policies;
  // Define a policy that does not throw on overflow:
  typedef policy<overflow_error<errno_on_error>> my_policy;
  // Define the distributions in this scope to use the policy:
  BOOST_MATH_DECLARE_DISTRIBUTIONS(normal, my_policy)
}
```
```cpp
#include <boost/math/distributions/cauchy.hpp>

namespace myspace{

using namespace boost::math::policies;

// Define a policy to use, in this case we want all the distribution
// accessor functions to compile, even if they are mathematically
// undefined:
typedef policy<assert_undefined<false> > my_policy;

BOOST_MATH_DECLARE_DISTRIBUTIONS(double, my_policy)
}

// Now we can use myspace::cauchy etc, which will use policy
// myspace::mypolicy:
//
// This compiles but raises a domain error at runtime:
//
// void test_cauchy()
// {
//    try
//    {
//        double d = mean(myspace::cauchy());
//    }
//    catch(const std::domain_error& e)
//    {
//        std::cout << e.what() << std::endl;
//    }
// }
```

In this example the result of `BOOST_MATH_DECLARE_DISTRIBUTIONS` is to declare a typedef for each distribution like this:

```cpp
typedef boost::math::cauchy_distribution<double, my_policy> cauchy;
typedef boost::math::gamma_distribution<double, my_policy> gamma;
```

and so on. The name given to each typedef is the name of the distribution with the "_distribution" suffix removed.

Policy Class Reference

There's very little to say here, the `policy` class is just a rag-bag compile-time container for a collection of policies:

```cpp
#include <boost/math/policies/policy.hpp>
```
namespace boost{
namespace math{
namespace policies

template <class A1 = default_policy,
 class A2 = default_policy,
 class A3 = default_policy,
 class A4 = default_policy,
 class A5 = default_policy,
 class A6 = default_policy,
 class A7 = default_policy,
 class A8 = default_policy,
 class A9 = default_policy,
 class A10 = default_policy,
 class A11 = default_policy,
 class A12 = default_policy,
 class A13 = default_policy>
struct policy
{
public:
 typedef computed-from-template-arguments domain_error_type;
 typedef computed-from-template-arguments pole_error_type;
 typedef computed-from-template-arguments overflow_error_type;
 typedef computed-from-template-arguments underflow_error_type;
 typedef computed-from-template-arguments denorm_error_type;
 typedef computed-from-template-arguments rounding_error_type;
 typedef computed-from-template-arguments evaluation_error_type;
 typedef computed-from-template-arguments indeterminate_result_error_type;
 typedef computed-from-template-arguments precision_type;
 typedef computed-from-template-arguments promote_float_type;
 typedef computed-from-template-arguments promote_double_type;
 typedef computed-from-template-arguments discrete_quantile_type;
 typedef computed-from-template-arguments assert_undefined_type;
};

template <...argument list...>
typename normalise<policy>, A1>::type make_policy(...argument list..);

template <class Policy,
 class A1 = default_policy,
 class A2 = default_policy,
 class A3 = default_policy,
 class A4 = default_policy,
 class A5 = default_policy,
 class A6 = default_policy,
 class A7 = default_policy,
 class A8 = default_policy,
 class A9 = default_policy,
 class A10 = default_policy,
 class A11 = default_policy,
 class A12 = default_policy,
 class A13 = default_policy>
struct normalise
{
 typedef computed-from-template-arguments type;
};

The member typedefs of class policy are intended for internal use but are documented briefly here for the sake of completeness.
Policy types and their descriptions:

policy<...>::domain_error_type

Specifies how domain errors are handled, will be an instance of `boost::math::policies::domain_error<>` with the template argument to `domain_error` one of the `error_policy_type` enumerated values.

policy<...>::pole_error_type

Specifies how pole-errors are handled, will be an instance of `boost::math::policies::pole_error<>` with the template argument to `pole_error` one of the `error_policy_type` enumerated values.

policy<...>::overflow_error_type

Specifies how overflow errors are handled, will be an instance of `boost::math::policies::overflow_error<>` with the template argument to `overflow_error` one of the `error_policy_type` enumerated values.

policy<...>::underflow_error_type

Specifies how underflow errors are handled, will be an instance of `boost::math::policies::underflow_error<>` with the template argument to `underflow_error` one of the `error_policy_type` enumerated values.

policy<...>::denorm_error_type

Specifies how denorm errors are handled, will be an instance of `boost::math::policies::denorm_error<>` with the template argument to `denorm_error` one of the `error_policy_type` enumerated values.

policy<...>::rounding_error_type

Specifies how rounding errors are handled, will be an instance of `boost::math::policies::rounding_error<>` with the template argument to `rounding_error` one of the `error_policy_type` enumerated values.

policy<...>::evaluation_error_type

Specifies how evaluation errors are handled, will be an instance of `boost::math::policies::evaluation_error<>` with the template argument to `evaluation_error` one of the `error_policy_type` enumerated values.

policy<...>::indeterminate_error_type

Specifies how indeterminate result errors are handled, will be an instance of `boost::math::policies::indeterminate_result_error<>` with the template argument to `indeterminate_result_error` one of the `error_policy_type` enumerated values.

policy<...>::precision_type

Specifies the internal precision to use in binary digits (uses zero to represent whatever the default precision is). Will be an instance of `boost::math::policies::digits2<N>` which in turn inherits from `boost::mpl::int_<N>`.

policy<...>::promote_float_type

Specifies whether or not to promote `float` arguments to double precision internally. Will be an instance of `boost::math::policies::promote_float` which in turn inherits from `boost::mpl::bool_`.
policy<...>::promote_double_type

Specifies whether or not to promote double arguments to long double precision internally. Will be an instance of boost::math::policies::promote_float which in turn inherits from boost::mpl::bool_.

policy<...>::discrete_quantile_type

Specifies how discrete quantiles are evaluated, will be an instance of boost::math::policies::discrete_quantile<> instantiated with one of the discrete_quantile_policy_type enumerated type.

policy<...>::assert_undefined_type

Specifies whether mathematically-undefined properties are asserted as compile-time errors, or treated as runtime errors instead. Will be an instance of boost::math::policies::assert_undefined which in turn inherits from boost::math::mpl::bool_.

template <...argument list...>
typename normalise<policy<>, A1>::type make_policy(...argument list..);

make_policy is a helper function that converts a list of policies into a normalised policy class.

```
template <class Policy, 
    class A1 = default_policy, 
    class A2 = default_policy, 
    class A3 = default_policy, 
    class A4 = default_policy, 
    class A5 = default_policy, 
    class A6 = default_policy, 
    class A7 = default_policy, 
    class A8 = default_policy, 
    class A9 = default_policy, 
    class A10 = default_policy, 
    class A11 = default_policy, 
    class A12 = default_policy, 
    class A13 = default_policy>
struct normalise
{
    typedef computed-from-template-arguments type;
};
```

The normalise class template converts one instantiation of the policy class into a normalised form. This is used internally to reduce code bloat: so that instantiating a special function on policy<A,B> or policy<B,A> actually both generate the same code internally.

Further more, normalise can be used to combine a policy with one or more policies: for example many of the special functions will use this to set policies which they don't make use of to their default values, before forwarding to the actual implementation. In this way code bloat is reduced, since the actual implementation depends only on the policy types that they actually use.

Performance

Performance Overview

By and large the performance of this library should be acceptable for most needs. However, you should note that the library's primary emphasis is on accuracy and numerical stability, and not speed.

In terms of the algorithms used, this library aims to use the same "best of breed" algorithms as many other libraries: the principle difference is that this library is implemented in C++ - taking advantage of all the abstraction mechanisms that C++ offers - where
as most traditional numeric libraries are implemented in C or FORTRAN. Traditionally languages such as C or FORTRAN are perceived as easier to optimise than more complex languages like C++, so in a sense this library provides a good test of current compiler technology, and the "abstraction penalty" - if any - of C++ compared to other languages.

The two most important things you can do to ensure the best performance from this library are:

1. Turn on your compilers optimisations: the difference between "release" and "debug" builds can easily be a factor of 20.

2. Pick your compiler carefully: performance differences of up to 8 fold have been found between some windows compilers for example.

The performance section contains more information on the performance of this library, what you can do to fine tune it, and how this library compares to some other open source alternatives.

Interpreting these Results

In all of the following tables, the best performing result in each row, is assigned a relative value of "1" and shown in bold, so a score of "2" means "twice as slow as the best performing result". Actual timings in seconds per function call are also shown in parenthesis.

Result were obtained on a system with an Intel 2.8GHz Pentium 4 processor with 2Gb of RAM and running either Windows XP or Mandriva Linux.

Caution

As usual with performance results these should be taken with a large pinch of salt: relative performance is known to shift quite a bit depending upon the architecture of the particular test system used. Further more, our performance results were obtained using our own test data: these test values are designed to provide good coverage of our code and test all the appropriate corner cases. They do not necessarily represent "typical" usage: whatever that may be!

Getting the Best Performance from this Library

By far the most important thing you can do when using this library is turn on your compiler's optimisation options. As the following table shows the penalty for using the library in debug mode can be quite large.
Table 47. Performance Comparison of Release and Debug Settings

<table>
<thead>
<tr>
<th>Function</th>
<th>Microsoft Visual C++ 8.0</th>
<th>Microsoft Visual C++ 8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Debug Settings: /Od /ZI</td>
<td>Release settings: /Ox /arch:SSE2</td>
</tr>
<tr>
<td>erf</td>
<td>16.65 (1.028e-006s)</td>
<td>1.00 (1.483e-007s)</td>
</tr>
<tr>
<td>erf_inv</td>
<td>19.28 (1.215e-006s)</td>
<td>1.00 (4.888e-007s)</td>
</tr>
<tr>
<td>ibeta and ibetac</td>
<td>8.32 (1.540e-005s)</td>
<td>1.00 (1.852e-006s)</td>
</tr>
<tr>
<td>ibeta_inv and ibetac_inv</td>
<td>10.25 (7.492e-005s)</td>
<td>1.00 (7.311e-006s)</td>
</tr>
<tr>
<td>ibeta_inva, ibetac_inva, ibeta_invb and ibetac_invb</td>
<td>8.57 (2.441e-004s)</td>
<td>1.00 (2.847e-005s)</td>
</tr>
<tr>
<td>gamma_p and gamma_q</td>
<td>10.98 (1.044e-005s)</td>
<td>1.00 (9.504e-007s)</td>
</tr>
<tr>
<td>gamma_p_inv and gamma_q_inv</td>
<td>10.25 (3.721e-005s)</td>
<td>1.00 (3.631e-006s)</td>
</tr>
<tr>
<td>gamma_p_inva and gamma_q_inva</td>
<td>11.26 (1.124e-004s)</td>
<td>1.00 (9.982e-006s)</td>
</tr>
</tbody>
</table>

Comparing Compilers

After a good choice of build settings the next most important thing you can do, is choose your compiler - and the standard C library it sits on top of - very carefully. GCC-3.x in particular has been found to be particularly bad at inlining code, and performing the kinds of high level transformations that good C++ performance demands (thankfully GCC-4.x is somewhat better in this respect).
Table 48. Performance Comparison of Various Windows Compilers

<table>
<thead>
<tr>
<th>Function</th>
<th>Intel C++ 10.0 (/Ox /Qipo /QxN)</th>
<th>Microsoft Visual C++ 8.0 (/Ox /arch:SSE2)</th>
<th>Cygwin G++ 3.4 (/O3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>erf</td>
<td>1.00 (4.118e-008s)</td>
<td>1.00 (1.483e-007s)</td>
<td>3.24 (1.336e-007s)</td>
</tr>
<tr>
<td>erf_inv</td>
<td>1.00 (4.439e-008s)</td>
<td>1.00 (4.888e-007s)</td>
<td>7.88 (3.500e-007s)</td>
</tr>
<tr>
<td>ibeta and ibetac</td>
<td>1.00 (1.631e-006s)</td>
<td>1.14 (1.852e-006s)</td>
<td>3.05 (4.975e-006s)</td>
</tr>
<tr>
<td>ibeta_inv and ibetac_inv</td>
<td>1.00 (6.133e-006s)</td>
<td>1.19 (7.311e-006s)</td>
<td>2.60 (1.597e-005s)</td>
</tr>
<tr>
<td>ibeta_inva, ibetac_inva, ibeta_invb and ibetac_invb</td>
<td>1.00 (2.453e-005s)</td>
<td>1.16 (2.847e-005s)</td>
<td>2.83 (6.947e-005s)</td>
</tr>
<tr>
<td>gamma_p and gamma_q</td>
<td>1.00 (6.735e-007s)</td>
<td>1.41 (9.504e-007s)</td>
<td>2.78 (1.872e-006s)</td>
</tr>
<tr>
<td>gamma_p_inv and gamma_q_inv</td>
<td>1.00 (2.637e-006s)</td>
<td>1.38 (3.631e-006s)</td>
<td>3.31 (8.736e-006s)</td>
</tr>
<tr>
<td>gamma_p_inva and gamma_q_inva</td>
<td>1.00 (7.716e-006s)</td>
<td>1.29 (9.982e-006s)</td>
<td>2.56 (1.974e-005s)</td>
</tr>
</tbody>
</table>

Performance Tuning Macros

There are a small number of performance tuning options that are determined by configuration macros. These should be set in `boost/math/tools/user.hpp`; or else reported to the Boost-development mailing list so that the appropriate option for a given compiler and OS platform can be set automatically in our configuration setup.
<table>
<thead>
<tr>
<th>Macro</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOST_MATH_POLY_METHOD</td>
<td>Determines how polynomials and most rational functions are evaluated. Define to one of the values 0, 1, 2 or 3: see below for the meaning of these values.</td>
</tr>
<tr>
<td>BOOST_MATH_RATIONAL_METHOD</td>
<td>Determines how symmetrical rational functions are evaluated: mostly this only effects how the Lanczos approximation is evaluated, and how the evaluate_rational function behaves. Define to one of the values 0, 1, 2 or 3: see below for the meaning of these values.</td>
</tr>
<tr>
<td>BOOST_MATH_MAX_POLY_ORDER</td>
<td>The maximum order of polynomial or rational function that will be evaluated by a method other than 0 (a simple "for" loop).</td>
</tr>
</tbody>
</table>
| BOOST_MATH_INT_TABLE_TYPE(RT, IT) | Many of the coefficients to the polynomials and rational functions used by this library are integers. Normally these are stored as tables as integers, but if mixed integer / floating point arithmetic is much slower than regular floating point arithmetic then they can be stored as tables of floating point values instead. If mixed arithmetic is slow then add:

 `#define BOOST_MATH_INT_TABLE_TYPE(RT, IT) RT`

 to boost/math/tools/user.hpp, otherwise the default of:

 `#define BOOST_MATH_INT_TABLE_TYPE(RT, IT) IT`

 Set in boost/math/config.hpp is fine, and may well result in smaller code. |

The values to which `BOOST_MATH_POLY_METHOD` and `BOOST_MATH_RATIONAL_METHOD` may be set are as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The polynomial or rational function is evaluated using Horner's method, and a simple for-loop. Note that if the order of the polynomial or rational function is a runtime parameter, or the order is greater than the value of <code>BOOST_MATH_MAX_POLY_ORDER</code>, then this method is always used, irrespective of the value of <code>BOOST_MATH_POLY_METHOD</code> or <code>BOOST_MATH_RATIONAL_METHOD</code>.</td>
</tr>
<tr>
<td>1</td>
<td>The polynomial or rational function is evaluated without the use of a loop, and using Horner's method. This only occurs if the order of the polynomial is known at compile time and is less than or equal to <code>BOOST_MATH_MAX_POLY_ORDER</code>.</td>
</tr>
<tr>
<td>2</td>
<td>The polynomial or rational function is evaluated without the use of a loop, and using a second order Horner's method. In theory this permits two operations to occur in parallel for polynomials, and four in parallel for rational functions. This only occurs if the order of the polynomial is known at compile time and is less than or equal to <code>BOOST_MATH_MAX_POLY_ORDER</code>.</td>
</tr>
<tr>
<td>3</td>
<td>The polynomial or rational function is evaluated without the use of a loop, and using a second order Horner's method. In theory this permits two operations to occur in parallel for polynomials, and four in parallel for rational functions. This differs from method "2" in that the code is carefully ordered to make the parallelisation more obvious to the compiler: rather than relying on the compiler's optimiser to spot the parallelisation opportunities. This only occurs if the order of the polynomial is known at compile time and is less than or equal to <code>BOOST_MATH_MAX_POLY_ORDER</code>.</td>
</tr>
</tbody>
</table>

To determine which of these options is best for your particular compiler/platform build the performance test application with your usual release settings, and run the program with the --tune command line option.

In practice the difference between methods is rather small at present, as the following table shows. However, parallelisation / vectorisation is likely to become more important in the future; quite likely the methods currently supported will need to be supplemented or replaced by ones more suited to highly vectorisable processors in the future.
There is one final performance tuning option that is available as a compile time policy. Normally when evaluating functions at double precision, these are actually evaluated at long double precision internally: this helps to ensure that as close to full double precision as possible is achieved, but may slow down execution in some environments. The defaults for this policy can be changed by defining the macro `BOOST_MATH_PROMOTE_DOUBLE_POLICY` to false, or by specifying a specific policy when calling the special functions or distributions. See also the policy tutorial.
Table 50. Performance Comparison with and Without Internal Promotion to long double

<table>
<thead>
<tr>
<th>Function</th>
<th>GCC 4.2, Linux (with internal promotion of double to long double)</th>
<th>GCC 4.2, Linux (without promotion of double)</th>
</tr>
</thead>
<tbody>
<tr>
<td>erf</td>
<td>1.48 (1.387e-007s)</td>
<td>1.00 (9.377e-008s)</td>
</tr>
<tr>
<td>erf_inv</td>
<td>1.11 (4.009e-007s)</td>
<td>1.00 (3.598e-007s)</td>
</tr>
<tr>
<td>ibeta and ibetac</td>
<td>1.29 (5.354e-006s)</td>
<td>1.00 (4.137e-006s)</td>
</tr>
<tr>
<td>ibeta_inv and ibetac_inv</td>
<td>1.44 (2.220e-005s)</td>
<td>1.00 (1.538e-005s)</td>
</tr>
<tr>
<td>ibeta_inva, ibetac_inva, ibeta_invb and ibetac_invb</td>
<td>1.25 (7.009e-005s)</td>
<td>1.00 (5.607e-005s)</td>
</tr>
<tr>
<td>gamma_p and gamma_q</td>
<td>1.26 (3.116e-006s)</td>
<td>1.00 (2.464e-006s)</td>
</tr>
<tr>
<td>gamma_p_inv and gamma_q_inv</td>
<td>1.27 (1.178e-005s)</td>
<td>1.00 (9.291e-006s)</td>
</tr>
<tr>
<td>gamma_p_inva and gamma_q_inva</td>
<td>1.20 (2.765e-005s)</td>
<td>1.00 (2.311e-005s)</td>
</tr>
</tbody>
</table>

Comparisons to Other Open Source Libraries

We've run our performance tests both for our own code, and against other open source implementations of the same functions. The results are presented below to give you a rough idea of how they all compare.

Caution

You should exercise extreme caution when interpreting these results, relative performance may vary by platform, the tests use data that gives good code coverage of our code, but which may skew the results towards the corner cases. Finally, remember that different libraries make different choices with regard to performance versus numerical stability.

Comparison to GSL-1.13 and Cephes

All the results were measured on a 2.0GHz Intel T5800 Core 2 Duo, 4Gb RAM, Windows Vista machine, with the test program compiled with Microsoft Visual C++ 2009 using the /Ox option.
<table>
<thead>
<tr>
<th>Function</th>
<th>Boost</th>
<th>GSL-1.9</th>
<th>Cephes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cbrt</td>
<td>1.00</td>
<td>N/A</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(4.873e-007s)</td>
<td></td>
<td>(6.699e-007s)</td>
</tr>
<tr>
<td>log1p</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(1.664e-007s)</td>
<td>(2.677e-007s)</td>
<td>(1.189e-007s)</td>
</tr>
<tr>
<td>expm1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(8.760e-008s)</td>
<td>(1.248e-007s)</td>
<td>(8.169e-008s)</td>
</tr>
<tr>
<td>tgamma</td>
<td>1.80</td>
<td>1.54</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(2.997e-007s)</td>
<td>(2.569e-007s)</td>
<td>(1.666e-007s)</td>
</tr>
<tr>
<td>lgamma</td>
<td>2.20</td>
<td>4.14</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(3.045e-007s)</td>
<td>(5.713e-007s)</td>
<td>(1.381e-007s)</td>
</tr>
<tr>
<td>erf and erfc</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(1.483e-007s)</td>
<td>(7.052e-007s)</td>
<td>(1.722e-007s)</td>
</tr>
<tr>
<td>gamma_p and gamma_q</td>
<td>1.00</td>
<td>3.57</td>
<td>4.29</td>
</tr>
<tr>
<td></td>
<td>(6.182e-007s)</td>
<td>(2.209e-006s)</td>
<td>(2.651e-006s)</td>
</tr>
<tr>
<td>gamma_p_inv and gamma_q_inv</td>
<td>1.00</td>
<td>N/A</td>
<td>+INF (^1)</td>
</tr>
<tr>
<td></td>
<td>(1.943e-006s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ibeta and ibetac</td>
<td>1.00</td>
<td>1.16</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>(1.670e-006s)</td>
<td>(1.935e-006s)</td>
<td>(1.935e-006s)</td>
</tr>
<tr>
<td>ibeta_inv and ibetac_inv</td>
<td>1.00</td>
<td>N/A</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td>(6.075e-006s)</td>
<td></td>
<td>(1.489e-005s)</td>
</tr>
<tr>
<td>cyl_bessel_j</td>
<td>17.89</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(4.248e-005s)</td>
<td>(5.214e-006s)</td>
<td>(2.374e-006s)</td>
</tr>
<tr>
<td>cyl_bessel_i</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(5.924e-006s)</td>
<td>(4.487e-006s)</td>
<td>(4.823e-006s)</td>
</tr>
<tr>
<td>cyl_bessel_k</td>
<td>1.00</td>
<td>1.00</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>(2.783e-006s)</td>
<td>(3.927e-006s)</td>
<td></td>
</tr>
<tr>
<td>cyl_neumann</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(4.465e-006s)</td>
<td>(1.230e-005s)</td>
<td>(4.977e-006s)</td>
</tr>
</tbody>
</table>

\(^1\) Cephes gets stuck in an infinite loop while trying to execute our test cases.
The performance here is dominated by a few cases where the parameters grow very large: faster asymptotic expansions are available, but are of limited (or even frankly terrible) precision. The same issue affects all of our Bessel function implementations, but doesn't necessarily show in the current performance data. More investigation is needed here.

Comparison to the R and DCDFLIB Statistical Libraries on Windows

All the results were measured on a 2.0GHz Intel T5800 Core 2 Duo, 4Gb RAM, Windows Vista machine, with the test program compiled with Microsoft Visual C++ 2009, and R-2.9.2 compiled in "standalone mode" with MinGW-4.3 (R-2.9.2 appears not to be buildable with Visual C++).
Table 51. A Comparison to the R Statistical Library on Windows XP

<table>
<thead>
<tr>
<th>Statistical Function</th>
<th>Boost</th>
<th>R</th>
<th>DCDFLIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta Distribution CDF</td>
<td>1.00</td>
<td>1.00</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>(1.385e-006s)</td>
<td>(1.278e-006s)</td>
<td>(1.349e-006s)</td>
</tr>
<tr>
<td>Beta Distribution Quantile</td>
<td>1.00</td>
<td>67.66</td>
<td>4.23</td>
</tr>
<tr>
<td></td>
<td>(4.975e-006s)</td>
<td>(3.366e-004s)</td>
<td>(2.103e-005s)</td>
</tr>
<tr>
<td>Binomial Distribution CDF</td>
<td>1.06</td>
<td>1.81</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(4.503e-007s)</td>
<td>(7.680e-007s)</td>
<td>(4.239e-007s)</td>
</tr>
<tr>
<td>Binomial Distribution Quantile</td>
<td>1.00</td>
<td>1.15</td>
<td>7.25</td>
</tr>
<tr>
<td></td>
<td>(3.254e-006s)</td>
<td>(3.746e-006s)</td>
<td>(2.358e-005s)</td>
</tr>
<tr>
<td>Cauchy Distribution CDF</td>
<td>1.00</td>
<td>1.08</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(1.134e-007s)</td>
<td>(1.227e-007s)</td>
<td></td>
</tr>
<tr>
<td>Cauchy Distribution Quantile</td>
<td>1.00</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(1.203e-007s)</td>
<td>(1.203e-007s)</td>
<td></td>
</tr>
<tr>
<td>Chi Squared Distribution CDF</td>
<td>1.21</td>
<td>2.83</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(5.021e-007s)</td>
<td>(1.176e-006s)</td>
<td>(4.155e-007s)</td>
</tr>
<tr>
<td>Chi Squared Distribution Quantile</td>
<td>1.00</td>
<td>2.72</td>
<td>5.73</td>
</tr>
<tr>
<td></td>
<td>(1.930e-006s)</td>
<td>(5.243e-006s)</td>
<td>(1.106e-005s)</td>
</tr>
<tr>
<td>Exponential Distribution CDF</td>
<td>1.00</td>
<td>5.89</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(3.798e-008s)</td>
<td>(2.236e-007s)</td>
<td></td>
</tr>
<tr>
<td>Exponential Distribution Quantile</td>
<td>1.00</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(9.006e-008s)</td>
<td>(6.380e-008s)</td>
<td></td>
</tr>
<tr>
<td>Fisher F Distribution CDF</td>
<td>1.00</td>
<td>1.34</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>(9.556e-007s)</td>
<td>(1.283e-006s)</td>
<td>(1.183e-006s)</td>
</tr>
<tr>
<td>Fisher F Distribution Quantile</td>
<td>1.00</td>
<td>1.33</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td>(6.987e-006s)</td>
<td>(9.325e-006s)</td>
<td>(2.205e-005s)</td>
</tr>
<tr>
<td>Gamma Distribution CDF</td>
<td>1.52</td>
<td>3.11</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(6.240e-007s)</td>
<td>(1.279e-006s)</td>
<td>(4.111e-007s)</td>
</tr>
<tr>
<td>Gamma Distribution Quantile</td>
<td>1.24</td>
<td>6.25</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(2.179e-006s)</td>
<td>(1.102e-005s)</td>
<td>(1.764e-006s)</td>
</tr>
</tbody>
</table>

 XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/
<table>
<thead>
<tr>
<th>Statistical Function</th>
<th>Boost</th>
<th>R</th>
<th>DCDLIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypergeometric Distribution CDF</td>
<td>3.60</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.987e-007s)</td>
<td>(1.665e-007s)</td>
<td></td>
</tr>
<tr>
<td>Hypergeometric Distribution Quantile</td>
<td>1.00</td>
<td>3.53</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.684e-007s)</td>
<td>(2.004e-006s)</td>
<td></td>
</tr>
<tr>
<td>Logistic Distribution CDF</td>
<td>1.00</td>
<td>5.24</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.714e-007s)</td>
<td>(8.984e-007s)</td>
<td></td>
</tr>
<tr>
<td>Logistic Distribution Quantile</td>
<td>1.02</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.084e-007s)</td>
<td>(2.043e-007s)</td>
<td></td>
</tr>
<tr>
<td>Log-normal Distribution CDF</td>
<td>1.00</td>
<td>1.49</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.579e-007s)</td>
<td>(5.332e-007s)</td>
<td></td>
</tr>
<tr>
<td>Log-normal Distribution Quantile</td>
<td>1.00</td>
<td>1.57</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.622e-007s)</td>
<td>(1.507e-006s)</td>
<td></td>
</tr>
<tr>
<td>Negative Binomial Distribution CDF</td>
<td>1.00</td>
<td>2.25</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.227e-007s)</td>
<td>(1.403e-006s)</td>
<td>(1.378e-006s)</td>
</tr>
<tr>
<td>Negative Binomial Distribution Quantile</td>
<td>1.00</td>
<td>43.43</td>
<td>3.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.594e-006s)</td>
<td>(3.732e-004s)</td>
<td>(2.994e-005s)</td>
</tr>
<tr>
<td>Noncentral Chi Squared Distribution CDF</td>
<td>2.16</td>
<td>79.93</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.926e-006s)</td>
<td>(1.450e-004s)</td>
<td>(1.814e-006s)</td>
</tr>
<tr>
<td>Noncentral Chi Squared Distribution Quantile</td>
<td>5.00</td>
<td>393.90</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.393e-004s)</td>
<td>(2.673e-002s)</td>
<td>(6.786e-005s)</td>
</tr>
<tr>
<td>Noncentral F Distribution CDF</td>
<td>1.59</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.128e-005s)</td>
<td>(7.087e-006s)</td>
<td>(4.274e-006s)</td>
</tr>
<tr>
<td>Noncentral F Distribution Quantile</td>
<td>1.00</td>
<td>1.62</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.750e-004s)</td>
<td>(7.681e-004s)</td>
<td>(4.274e-006s)</td>
</tr>
<tr>
<td>noncentral T distribution CDF</td>
<td>3.41</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.852e-005s)</td>
<td>(5.436e-006s)</td>
<td></td>
</tr>
<tr>
<td>noncentral T distribution Quantile</td>
<td>1.31</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.768e-004s)</td>
<td>(4.411e-004s)</td>
<td></td>
</tr>
<tr>
<td>Statistical Function</td>
<td>Boost</td>
<td>R</td>
<td>DCDFLIB</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Normal Distribution CDF</td>
<td>1.00</td>
<td>1.68</td>
<td>6.01</td>
</tr>
<tr>
<td></td>
<td>(8.373e-008s)</td>
<td>(1.409e-007s)</td>
<td>(5.029e-007s)</td>
</tr>
<tr>
<td>Normal Distribution Quantile</td>
<td>1.29</td>
<td>1.00</td>
<td>10.85</td>
</tr>
<tr>
<td></td>
<td>(1.521e-007s)</td>
<td>(1.182e-007s)</td>
<td>(1.283e-006s)</td>
</tr>
<tr>
<td>Poisson Distribution CDF</td>
<td>1.18</td>
<td>2.98</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(5.193e-007s)</td>
<td>(1.314e-006s)</td>
<td>(4.410e-007s)</td>
</tr>
<tr>
<td>Poisson Distribution</td>
<td>1.00</td>
<td>2.20</td>
<td>7.86</td>
</tr>
<tr>
<td></td>
<td>(1.203e-006s)</td>
<td>(2.642e-006s)</td>
<td>(9.457e-006s)</td>
</tr>
<tr>
<td>Students t Distribution CDF</td>
<td>1.00</td>
<td>1.06</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>(8.655e-007s)</td>
<td>(9.166e-007s)</td>
<td>(8.999e-007s)</td>
</tr>
<tr>
<td>Students t Distribution Quantile</td>
<td>1.00</td>
<td>1.36</td>
<td>4.82</td>
</tr>
<tr>
<td></td>
<td>(2.294e-006s)</td>
<td>(3.131e-006s)</td>
<td>(1.106e-005s)</td>
</tr>
<tr>
<td>Weibull Distribution CDF</td>
<td>1.00</td>
<td>2.33</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(1.865e-007s)</td>
<td>(4.341e-007s)</td>
<td>NA</td>
</tr>
<tr>
<td>Weibull Distribution Quantile</td>
<td>1.00</td>
<td>1.22</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(3.608e-007s)</td>
<td>(4.410e-007s)</td>
<td>NA</td>
</tr>
</tbody>
</table>

1 There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.
2 This result is somewhat misleading: for small values of the parameters there is virtually no difference between the two libraries, but for large values the Boost implementation is much slower, albeit with much improved precision.
3 The R library appears to use a linear-search strategy, that can perform very badly in a small number of pathological cases, but may or may not be more efficient in “typical” cases
4 There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.
5 There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.

Comparison to the R Statistical Library on Linux

All the results were measured on a 2.0GHz Intel T5800 Core 2 Duo, 4Gb RAM, Ubuntu Linux 9 machine, with the test program and R-2.9.2 compiled with GNU G++ 4.3.3 using -O3 -DNDEBUG=1.
Table 52. A Comparison to the R Statistical Library on Linux

<table>
<thead>
<tr>
<th>Statistical Function</th>
<th>Boost</th>
<th>R</th>
<th>DCDLIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta Distribution CDF</td>
<td>2.09</td>
<td>1.00</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>(3.189e-006s)</td>
<td>(1.526e-006s)</td>
<td>(1.822e-006s)</td>
</tr>
<tr>
<td>Beta Distribution Quantile</td>
<td>1.00</td>
<td>30.51 (^1)</td>
<td>2.52</td>
</tr>
<tr>
<td></td>
<td>(1.185e-005s)</td>
<td>(3.616e-004s)</td>
<td>(2.989e-005s)</td>
</tr>
<tr>
<td>Binomial Distribution CDF</td>
<td>4.41</td>
<td>3.59</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(9.175e-007s)</td>
<td>(7.476e-007s)</td>
<td>(2.081e-007s)</td>
</tr>
<tr>
<td>Binomial Distribution Quantile</td>
<td>1.57</td>
<td>1.00</td>
<td>7.43</td>
</tr>
<tr>
<td></td>
<td>(6.925e-006s)</td>
<td>(4.407e-006s)</td>
<td>(3.274e-005s)</td>
</tr>
<tr>
<td>Cauchy Distribution CDF</td>
<td>1.00</td>
<td>1.04</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(1.594e-007s)</td>
<td>(1.654e-007s)</td>
<td></td>
</tr>
<tr>
<td>Cauchy Distribution Quantile</td>
<td>1.21</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(1.752e-007s)</td>
<td>(1.448e-007s)</td>
<td></td>
</tr>
<tr>
<td>Chi Squared Distribution CDF</td>
<td>2.61</td>
<td>2.36</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(1.376e-006s)</td>
<td>(1.243e-006s)</td>
<td>(5.270e-007s)</td>
</tr>
<tr>
<td>Chi Squared Distribution Quantile</td>
<td>1.00</td>
<td>1.34</td>
<td>3.47</td>
</tr>
<tr>
<td></td>
<td>(4.252e-006s)</td>
<td>(5.700e-006s)</td>
<td>(1.477e-005s)</td>
</tr>
<tr>
<td>Exponential Distribution CDF</td>
<td>1.00</td>
<td>1.25</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(1.342e-007s)</td>
<td>(1.677e-007s)</td>
<td></td>
</tr>
<tr>
<td>Exponential Distribution Quantile</td>
<td>1.00</td>
<td>1.07</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(8.827e-008s)</td>
<td>(9.470e-008s)</td>
<td></td>
</tr>
<tr>
<td>Fisher F Distribution CDF</td>
<td>1.62</td>
<td>1.19</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(2.324e-006s)</td>
<td>(1.711e-006s)</td>
<td>(1.437e-006s)</td>
</tr>
<tr>
<td>Fisher F Distribution Quantile</td>
<td>1.53</td>
<td>1.00</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>(1.577e-005s)</td>
<td>(1.033e-005s)</td>
<td>(2.719e-005s)</td>
</tr>
<tr>
<td>Gamma Distribution CDF</td>
<td>3.18</td>
<td>2.63</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(1.582e-006s)</td>
<td>(1.309e-006s)</td>
<td>(4.980e-007s)</td>
</tr>
<tr>
<td>Gamma Distribution Quantile</td>
<td>2.19</td>
<td>6.94</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(4.770e-006s)</td>
<td>(1.513e-005s)</td>
<td>(2.179e-006s)</td>
</tr>
<tr>
<td>Statistical Function</td>
<td>Boost</td>
<td>R</td>
<td>DCDFLIB</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Hypergeometric Distribution CDF</td>
<td>2.20</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(3.522e-007s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.601e-007s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypergeometric Distribution Quantile</td>
<td>1.00</td>
<td>2.57</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(8.279e-007s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.125e-006s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistic Distribution CDF</td>
<td>1.00</td>
<td>2.75</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(9.398e-008s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.588e-007s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistic Distribution Quantile</td>
<td>1.00</td>
<td>1.30</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(9.893e-008s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.285e-007s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log-normal Distribution CDF</td>
<td>1.00</td>
<td>1.39</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(1.831e-007s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.539e-007s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log-normal Distribution Quantile</td>
<td>1.10</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(5.551e-007s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.037e-007s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Binomial Distribution CDF</td>
<td>1.08</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(1.563e-006s)</td>
<td></td>
<td>(1.444e-006s)</td>
</tr>
<tr>
<td></td>
<td>(1.444e-006s)</td>
<td></td>
<td>(1.444e-006s)</td>
</tr>
<tr>
<td>Negative Binomial Distribution Quantile</td>
<td>1.00</td>
<td>25.92</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>(1.700e-005s)</td>
<td></td>
<td>(3.274e-005s)</td>
</tr>
<tr>
<td></td>
<td>(4.407e-004s)</td>
<td></td>
<td>(3.274e-005s)</td>
</tr>
<tr>
<td>Noncentral Chi Squared Distribution CDF</td>
<td>5.06</td>
<td>25.01</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(2.841e-005s)</td>
<td></td>
<td>(5.617e-006s)</td>
</tr>
<tr>
<td></td>
<td>(1.405e-004s)</td>
<td></td>
<td>(5.617e-006s)</td>
</tr>
<tr>
<td>Noncentral Chi Squared Distribution Quantile</td>
<td>8.47</td>
<td>144.91</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(1.879e-003s)</td>
<td></td>
<td>(2.218e-004s)</td>
</tr>
<tr>
<td></td>
<td>(3.214e-002s)</td>
<td></td>
<td>(2.218e-004s)</td>
</tr>
<tr>
<td>Noncentral F Distribution CDF</td>
<td>10.33</td>
<td>1.42</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(5.868e-005s)</td>
<td></td>
<td>(5.682e-006s)</td>
</tr>
<tr>
<td></td>
<td>(8.058e-006s)</td>
<td></td>
<td>(5.682e-006s)</td>
</tr>
<tr>
<td>Noncentral F Distribution Quantile</td>
<td>5.64</td>
<td>6.63</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(7.869e-004s)</td>
<td></td>
<td>(1.396e-004s)</td>
</tr>
<tr>
<td></td>
<td>(9.256e-004s)</td>
<td></td>
<td>(1.396e-004s)</td>
</tr>
<tr>
<td>noncentral T distribution CDF</td>
<td>4.91</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(3.357e-005s)</td>
<td></td>
<td>(6.844e-006s)</td>
</tr>
<tr>
<td>noncentral T distribution Quantile</td>
<td>1.57</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(9.265e-004s)</td>
<td></td>
<td>(5.916e-004s)</td>
</tr>
</tbody>
</table>
Statistical Function

<table>
<thead>
<tr>
<th>Statistical Function</th>
<th>Boost</th>
<th>R</th>
<th>DCDFLIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Distribution CDF</td>
<td>1.00 (1.074e-007s)</td>
<td>1.16 (1.245e-007s)</td>
<td>5.36 (5.762e-007s)</td>
</tr>
<tr>
<td>Normal Distribution Quantile</td>
<td>1.28 (1.902e-007s)</td>
<td>1.00 (1.490e-007s)</td>
<td>10.35 (1.542e-006s)</td>
</tr>
<tr>
<td>Poisson Distribution CDF</td>
<td>2.43 (1.198e-006s)</td>
<td>2.25 (1.110e-006s)</td>
<td>1.00 (4.937e-007s)</td>
</tr>
<tr>
<td>Poisson Distribution</td>
<td>1.11 (3.032e-006s)</td>
<td>1.00 (2.724e-006s)</td>
<td>4.07 (1.110e-005s)</td>
</tr>
<tr>
<td>Students t Distribution CDF</td>
<td>2.17 (2.020e-006s)</td>
<td>1.00 (9.321e-007s)</td>
<td>1.10 (1.021e-006s)</td>
</tr>
<tr>
<td>Students t Distribution Quantile</td>
<td>1.18 (3.972e-006s)</td>
<td>1.00 (3.364e-006s)</td>
<td>3.89 (1.308e-005s)</td>
</tr>
<tr>
<td>Weibull Distribution CDF</td>
<td>1.00 (3.662e-007s)</td>
<td>1.04 (3.808e-007s)</td>
<td>NA</td>
</tr>
<tr>
<td>Weibull Distribution Quantile</td>
<td>1.00 (4.112e-007s)</td>
<td>1.05 (4.317e-007s)</td>
<td>NA</td>
</tr>
</tbody>
</table>

1. There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.

2. This result is somewhat misleading: for small values of the parameters there is virtually no difference between the two libraries, but for large values the Boost implementation is much slower, albeit with much improved precision.

3. The R library appears to use a linear-search strategy, that can perform very badly in a small number of pathological cases, but may or may not be more efficient in "typical" cases.

4. There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.

5. There are a small number of our test cases where the R library fails to converge on a result: these tend to dominate the performance result.

The Performance Test Application

Under `boost-path/libs/math/performance` you will find a (fairly rudimentary) performance test application for this library.

To run this application yourself, build the all the .cpp files in `boost-path/libs/math/performance` into an application using your usual release-build settings. Run the application with `--help` to see a full list of options, or with `--all` to test everything (which takes quite a while), or with `--tune` to test the available performance tuning options.

If you want to use this application to test the effect of changing any of the Policies, then you will need to build and run it twice: once with the default Policies, and then a second time with the Policies you want to test set as the default.
Backgrounders

Additional Implementation Notes

The majority of the implementation notes are included with the documentation of each function or distribution. The notes here are of a more general nature, and reflect more the general implementation philosophy used.

Implementation philosophy

"First be right, then be fast."

There will always be potential compromises to be made between speed and accuracy. It may be possible to find faster methods, particularly for certain limited ranges of arguments, but for most applications of math functions and distributions, we judge that speed is rarely as important as accuracy.

So our priority is accuracy.

To permit evaluation of accuracy of the special functions, production of extremely accurate tables of test values has received considerable effort.

(It also required much CPU effort - there was some danger of molten plastic dripping from the bottom of JM's laptop, so instead, PAB's Dual-core desktop was kept 50% busy for days calculating some tables of test values!)

For a specific RealType, say float or double, it may be possible to find approximations for some functions that are simpler and thus faster, but less accurate (perhaps because there are no refining iterations, for example, when calculating inverse functions).

If these prove accurate enough to be "fit for his purpose", then a user may substitute his custom specialization.

For example, there are approximations dating back from times when computation was a lot more expensive:

A H Carter, Approximations to percentage points of the z-distribution, Biometrika 34(2), 352 - 358 (Dec 1947).

These could still provide sufficient accuracy for some speed-critical applications.

Accuracy and Representation of Test Values

In order to be accurate enough for as many as possible real types, constant values are given to 50 decimal digits if available (though many sources proved only accurate near to 64-bit double precision). Values are specified as long double types by appending L, unless they are exactly representable, for example integers, or binary fractions like 0.125. This avoids the risk of loss of accuracy converting from double, the default type. Values are used after static_cast<RealType>(1.2345L) to provide the appropriate RealType for spot tests.

Functions that return constants values, like kurtosis for example, are written as

static_cast<RealType>(-3) / 5;

to provide the most accurate value that the compiler can compute for the real type. (The denominator is an integer and so will be promoted exactly).

So tests for one third, not exactly representable with radix two floating-point, (should) use, for example:

static_cast<RealType>(1) / 3;

If a function is very sensitive to changes in input, specifying an inexact value as input (such as 0.1) can throw the result off by a noticeable amount: 0.1f is "wrong" by ~1e-7 for example (because 0.1 has no exact binary representation). That is why exact binary
values - halves, quarters, and eighths etc - are used in test code along with the occasional fraction \(a/b \) with \(b \) a power of two (in order to ensure that the result is an exactly representable binary value).

Tolerance of Tests

The tolerances need to be set to the maximum of:

- Some epsilon value.
- The accuracy of the data (often only near 64-bit double).

Otherwise when long double has more digits than the test data, then no amount of tweaking an epsilon based tolerance will work.

A common problem is when tolerances that are suitable for implementations like Microsoft VS.NET where double and long double are the same size: tests fail on other systems where long double is more accurate than double. Check first that the suffix L is present, and then that the tolerance is big enough.

Handling Unsuitable Arguments

In *Errors in Mathematical Special Functions*, J. Marraffino & M. Paterno it is proposed that signalling a domain error is mandatory when the argument would give an mathematically undefined result.

- **Guideline 1**

 A mathematical function is said to be defined at a point \(a = (a_1, a_2, \ldots) \) if the limits as \(x = (x_1, x_2, \ldots) \) 'approaches a from all directions agree'. The defined value may be any number, or +infinity, or -infinity.

 Put crudely, if the function goes to + infinity and then emerges 'round-the-back' with - infinity, it is NOT defined.

 The library function which approximates a mathematical function shall signal a domain error whenever evaluated with argument values for which the mathematical function is undefined.

- **Guideline 2**

 The library function which approximates a mathematical function shall signal a domain error whenever evaluated with argument values for which the mathematical function obtains a non-real value.

This implementation is believed to follow these proposals and to assist compatibility with *ISO/IEC 9899:1999 Programming languages - C* and with the Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 5. See also domain_error.

See policy reference for details of the error handling policies that should allow a user to comply with any of these recommendations, as well as other behaviour.

See error handling for a detailed explanation of the mechanism, and error_handling example and error_handling_example.cpp

Caution

If you enable throw but do NOT have try & catch block, then the program will terminate with an uncaught exception and probably abort. Therefore to get the benefit of helpful error messages, enabling all exceptions and using try&catch is recommended for all applications. However, for simplicity, this is not done for most examples.

Handling of Functions that are Not Mathematically defined

Functions that are not mathematically defined, like the Cauchy mean, fail to compile by default. A policy allows control of this.

If the policy is to permit undefined functions, then calling them throws a domain error, by default. But the error policy can be set to not throw, and to return NaN instead. For example,

```c
#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error
```

Math Toolkit
appears before the first Boost include, then if the un-implemented function is called, mean(cauchy<>()) will return std::numeric_limits<T>::quiet_NaN().

Warning

If std::numeric_limits<T>::has_quiet_NaN is false (for example T is a User-defined type), then an exception will always be thrown when a domain error occurs. Catching exceptions is therefore strongly recommended.

Median of distributions

There are many distributions for which we have been unable to find an analytic formula, and this has deterred us from implementing median functions, the mid-point in a list of values.

However a useful median approximation for distribution dist may be available from quantile(dist, 0.5).

Mean, Median, and Skew, Paul T von Hippel

Descriptive Statistics,

and

Mathematica Basic Statistics, give more detail, in particular for discrete distributions.

Handling of Floating-Point Infinity

Some functions and distributions are well defined with + or - infinity as argument(s), but after some experiments with handling infinite arguments as special cases, we concluded that it was generally more useful to forbid this, and instead to return the result of domain_error.

Handling infinity as special cases is additionally complicated because, unlike built-in types on most - but not all - platforms, not all User-Defined Types are specialized to provide std::numeric_limits<RealType>::infinity() and would return zero rather than any representation of infinity.

The rationale is that non-finiteness may happen because of error or overflow in the users code, and it will be more helpful for this to be diagnosed promptly rather than just continuing. The code also became much more complicated, more error-prone, much more work to test, and much less readable.

However in a few cases, for example normal, where we felt it obvious, we have permitted argument(s) to be infinity, provided infinity is implemented for the realType on that implementation.

Users who require special handling of infinity (or other specific value) can, of course, always intercept this before calling a distribution or function and return their own choice of value, or other behavior. This will often be simpler than trying to handle the aftermath of the error policy.

Overflow, underflow, denorm can be handled using error handling policies.

We have also tried to catch boundary cases where the mathematical specification would result in divide by zero or overflow and signalling these similarly. What happens at (and near), poles can be controlled through error handling policies.

Scale, Shape and Location

We considered adding location and scale to the list of functions, for example:
template <class RealType>
inline RealType scale(const triangular_distribution<RealType>& dist)
{
 RealType lower = dist.lower();
 RealType mode = dist.mode();
 RealType upper = dist.upper();
 RealType result; // of checks.
 if(false == detail::check_triangular(BOOST_CURRENT_FUNCTION, lower, mode, upper, &result))
 {
 return result;
 }
 return (upper - lower);
}

but found that these concepts are not defined (or their definition too contentious) for too many distributions to be generally applicable. Because they are non-member functions, they can be added if required.

Notes on Implementation of Specific Functions & Distributions

• Default parameters for the Triangular Distribution. We are uncertain about the best default parameters. Some sources suggest that the Standard Triangular Distribution has lower = 0, mode = half and upper = 1. However as a approximation for the normal distribution, the most common usage, lower = -1, mode = 0 and upper = 1 would be more suitable.

Rational Approximations Used

Some of the special functions in this library are implemented via rational approximations. These are either taken from the literature, or devised by John Maddock using our Remez code.

Rational rather than Polynomial approximations are used to ensure accuracy: polynomial approximations are often wonderful up to a certain level of accuracy, but then quite often fail to provide much greater accuracy no matter how many more terms are added.

Our own approximations were devised either for added accuracy (to support 128-bit long doubles for example), or because literature methods were unavailable or under non-BSL compatible license. Our Remez code is known to produce good agreement with literature results in fairly simple "toy" cases. All approximations were checked for convergence and to ensure that they were not ill-conditioned (the coefficients can give a theoretically good solution, but the resulting rational function may be un-computable at fixed precision).

Recomputing using different Remez implementations may well produce differing coefficients: the problem is well known to be ill conditioned in general, and our Remez implementation often found a broad and ill-defined minima for many of these approximations (of course for simple "toy" examples like approximating exp the minima is well defined, and the coefficients should agree no matter whose Remez implementation is used). This should not in general effect the validity of the approximations: there's good literature supporting the idea that coefficients can be "in error" without necessarily adversely effecting the result. Note that "in error" has a special meaning in this context, see "Approximate construction of rational approximations and the effect of error autocorrection.", Grigori Litvinov, eprint arXiv:math/0101042. Therefore the coefficients still need to be accurately calculated, even if they can be in error compared to the "true" minimax solution.

Representation of Mathematical Constants

A macro BOOST_DEFINE_MATH_CONSTANT in constants.hpp is used to provide high accuracy constants to mathematical functions and distributions, since it is important to provide values uniformly for both built-in float, double and long double types, and for User Defined types like NTL::quad_float and NTL::RR.

To permit calculations in this Math ToolKit and its tests, (and elsewhere) at about 100 decimal digits with NTL::RR type, it is obviously necessary to define constants to this accuracy.

However, some compilers do not accept decimal digits strings as long as this. So the constant is split into two parts, with the 1st containing at least long double precision, and the 2nd zero if not needed or known. The 3rd part permits an exponent to be provided if necessary (use zero if none) - the other two parameters may only contain decimal digits (and sign and decimal point), and may NOT include an exponent like 1.234E99 (nor a trailing F or L). The second digit string is only used if T is a User-Defined Type.
when the constant is converted to a long string literal and lexical_casted to type T. (This is necessary because you can't use a numeric constant since even a long double might not have enough digits).

For example, pi is defined:

```cpp
BOOST_DEFINE_MATH_CONSTANT(pi,
    3.141592653589793238462643383279502884197169399375105820974944,
    59230781640628620898586280348253421170679821480865132823066470938446095505,
    0)
```

And used thus:

```cpp
using namespace boost::math::constants;

double diameter = 1.;
double radius = diameter * pi<double>();
or boost::math::constants::pi<NTL::RR>()
```

Note that it is necessary (if inconvenient) to specify the type explicitly.

So you cannot write

```cpp
double p = boost::math::constants::pi<>(); // could not deduce template argument for 'T'
```

Neither can you write:

```cpp
double p = boost::math::constants::pi; // Context does not allow for disambiguation of overloaded .f
function
double p = boost::math::constants::pi(); // Context does not allow for disambiguation of overloaded .f
loaded function
```

Thread safety

Reporting of error by setting errno should be thread safe already (otherwise none of the std lib math functions would be thread safe?). If you turn on reporting of errors via exceptions, errno gets left unused anyway.

Other than that, the code is intended to be thread safe for built in real-number types: so float, double and long double are all thread safe.

For non-built-in types - NTL::RR for example - initialisation of the various constants used in the implementation is potentially not thread safe. This most undesirable, but it would be a significant challenge to fix it. Some compilers may offer the option of having static-constants initialised in a thread safe manner (Commeau, and maybe others?), if that's the case then the problem is solved. This is a topic of hot debate for the next C++ std revision, so hopefully all compilers will be required to do the right thing here at some point.

Sources of Test Data

We found a large number of sources of test data. We have assumed that these are “known good” if they agree with the results from our test and only consulted other sources for their ‘vote’ in the case of serious disagreement. The accuracy, actual and claimed, vary very widely. Only Wolfram Mathematica functions provided a higher accuracy than C++ double (64-bit floating-point) and was regarded as the most-trusted source by far.

A useful index of sources is: Web-oriented Teaching Resources in Probability and Statistics

Statlet: Is a Javascript application that calculates and plots probability distributions, and provides the most complete range of distributions:
Bernoulli, Binomial, discrete uniform, geometric, hypergeometric, negative binomial, Poisson, beta, Cauchy-Lorentz, chi-squared, Erlang, exponential, extreme value, Fisher, gamma, Laplace, logistic, lognormal, normal, Pareto, Student’s t, triangular, uniform, and Weibull.

It calculates pdf, cdf, survivor, log survivor, hazard, tail areas, & critical values for 5 tail values.

It is also the only independent source found for the Weibull distribution; unfortunately it appears to suffer from very poor accuracy in areas where the underlying special function is known to be difficult to implement.

Creating and Managing the Equations

The primary source for the equations is now MathML: see the *.mml files in libs/math/doc/sf_and_dist/equations/.

These are most easily edited by a GUI editor such as Mathcast, please note that the equation editor supplied with Open Office currently mangles these files and should not currently be used.

Conversion to SVG was achieved using SVMath and a command line such as:

```
$for file in *.mml; do
>cygdrive/c/Python25/python.exe 'C:\download\open\SVMath-0.3.1\math2svg.py' \n>>$file > $(basename $file .mml).svg
>done
```

Note that SVMath requires that the mml files are not wrapped in an XHTML XML wrapper - this is added by Mathcast by default - one workaround is to copy an existing mml file and then edit it with Mathcast: the existing format should then be preserved. This is a bug in the XML parser used by SVMath which the author is aware of.

If neccessary the XHTML wrapper can be removed with:

```
cat filename | tr -d "\r\n" | sed -e '/<math[^>]*>.*</math>\"/.*\{.*\}/1/' > newfile
```

Setting up fonts for SVMath is currently rather tricky, on a Windows XP system JM's font setup is the same as the sample config file provided with SVMath but with:

```
<!-- Double-struck -->
<mathvariant name="double-struck" family="Mathematica7, Lucida Sans Unicode"/>
```

changed to:

```
<!-- Double-struck -->
<mathvariant name="double-struck" family="Lucida Sans Unicode"/>
```

Note that unlike the sample config file supplied with SVMath, this does not make use of the Mathematica 7 font as this lacks sufficient Unicode information for it to be used with either SVMath or XEP "as is".

Also note that the SVG files in the repository are almost certainly Windows-specific since they reference various Windows Fonts.

PNG files can be created from the SVG's using Batik and a command such as:

```
java -jar 'C:\download\open\batik-1.7\batik-rasterizer.jar' -dpi 120 *.svg
```

Or using Inkscape and a command such as:
for file in *.svg; do
 /cygdrive/c/progra~1/Inkscape/inkscape -d 120 -e $(cygpath -a -w $(basename $file .svg).png) $(cygpath -a -w $file);
done

Currently Inkscape seems to generate the better looking png's.

The PDF is generated into \pdf\math.pdf using a command from a shell or command window with current directory \math_toolkit\libs\math\doc\sf_and_dist, typically:

bjam -a pdf >math_pdf.log

Note that XEP will have to be configured to use and embed whatever fonts are used by the SVG equations (almost certainly editing the sample xep.xml provided by the XEP installation). If you fail to do this you will get XEP warnings in the log file like

[warning]could not find any font family matching "Times New Roman"; replaced by Helvetica

(html is the default so it is generated at math_toolkit\libs\math\doc\sf_and_dist\html\index.html using command line >bjam -a >math_docs.log).

<!-- Sample configuration for Windows TrueType fonts. --> is provided in the xep.xml downloaded, but the Windows TrueType fonts are commented out.

JM's XEP config file \xep\xep.xml has the following font configuration section added:
PAB had to alter his because the Lucida Sans Unicode font had a different name. Other changes are very likely to be required if you are not using Windows.

XZ authored his equations using the venerable Latex, JM converted these to MathML using mxlatex. This process is currently unreliable and required some manual intervention: consequently Latex source is not considered a viable route for the automatic production of SVG versions of equations.

Equations are embedded in the quickbook source using the \texttt{equation} template defined in math.qbk. This outputs Docbook XML that looks like:
MathML is not currently present in the Docbook output, or in the generated HTML: this needs further investigation.

Producing Graphs

Graphs were produced in SVG format and then converted to PNG's using the same process as the equations.

Relative Error

Given an actual value \(a\) and a found value \(v\) the relative error can be calculated from:

\[
\left| \frac{a - v}{a} \right|
\]

However the test programs in the library use the symmetrical form:

\[
\max\left(\left| \frac{a - v}{a} \right| , \left| \frac{a - v}{v} \right| \right)
\]

which measures *relative difference* and happens to be less error prone in use since we don't have to worry which value is the "true" result, and which is the experimental one. It guarantees to return a value at least as large as the relative error.

Special care needs to be taken when one value is zero: we could either take the absolute error in this case (but that's cheating as the absolute error is likely to be very small), or we could assign a value of either 1 or infinity to the relative error in this special case. In the test cases for the special functions in this library, everything below a threshold is regarded as "effectively zero", otherwise the relative error is assigned the value of 1 if only one of the terms is zero. The threshold is currently set at std::numeric_limits<>::min(): in other words all denormalised numbers are regarded as a zero.

All the test programs calculate *quantized relative error*, whereas the graphs in this manual are produced with the *actual error*. The difference is as follows: in the test programs, the test data is rounded to the target real type under test when the program is compiled, so the error observed will then be a whole number of \(units\ in\ the\ last\ place\) either rounded up from the actual error, or rounded down (possibly to zero). In contrast the *true error* is obtained by extending the precision of the calculated value, and then comparing to the actual value: in this case the calculated error may be some fraction of \(units\ in\ the\ last\ place\).

Note that throughout this manual and the test programs the relative error is usually quoted in units of epsilon. However, remember that *units in the last place* more accurately reflect the number of contaminated digits, and that relative error can "wobble" by a factor of 2 compared to *units in the last place*. In other words: two implementations of the same function, whose maximum relative errors differ by a factor of 2, can actually be accurate to the same number of binary digits. You have been warned!

The Impossibility of Zero Error

For many of the functions in this library, it is assumed that the error is "effectively zero" if the computation can be done with a number of guard digits. However it should be remembered that if the result is a *transcendental number* then as a point of principle we can never be sure that the result is accurate to more than 1 ulp. This is an example of the *table makers dilemma*: consider what happens if the first guard digit is a one, and the remaining guard digits are all zero. Do we have a tie or not? Since the only thing we can tell about a transcendental number is that its digits have no particular pattern, we can never tell if we have a tie, no matter how many guard digits we have. Therefore, we can never be completely sure that the result has been rounded in the right direction. Of
course, transcendental numbers that just happen to be a tie - for however many guard digits we have - are extremely rare, and get rarer the more guard digits we have, but even so....

Refer to the classic text What Every Computer Scientist Should Know About Floating-Point Arithmetic for more information.

The Lanczos Approximation

Motivation

Why base gamma and gamma-like functions on the Lanczos approximation?

First of all I should make clear that for the gamma function over real numbers (as opposed to complex ones) the Lanczos approximation (See Wikipedia or Mathworld) appears to offer no clear advantage over more traditional methods such as Stirling's approximation. Pugh carried out an extensive comparison of the various methods available and discovered that they were all very similar in terms of complexity and relative error. However, the Lanczos approximation does have a couple of properties that make it worthy of further consideration:

- The approximation has an easy to compute truncation error that holds for all \(z > 0 \). In practice that means we can use the same approximation for all \(z > 0 \), and be certain that no matter how large or small \(z \) is, the truncation error will *at worst* be bounded by some finite value.

- The approximation has a form that is particularly amenable to analytic manipulation, in particular ratios of gamma or gamma-like functions are particularly easy to compute without resorting to logarithms.

It is the combination of these two properties that make the approximation attractive: Stirling's approximation is highly accurate for large \(z \), and has some of the same analytic properties as the Lanczos approximation, but can't easily be used across the whole range of \(z \).

As the simplest example, consider the ratio of two gamma functions: one could compute the result via \(\text{lgamma} \):

\[
\exp(\text{lgamma}(a) - \text{lgamma}(b));
\]

However, even if \(\text{lgamma} \) is uniformly accurate to 0.5ulp, the worst case relative error in the above can easily be shown to be:

\[
E_{\text{rel}} > a \cdot \log(a)/2 + b \cdot \log(b)/2
\]

For small \(a \) and \(b \) that's not a problem, but to put the relationship another way: *each time a and b increase in magnitude by a factor of 10, at least one decimal digit of precision will be lost.*

In contrast, by analytically combining like power terms in a ratio of Lanczos approximation's, these errors can be virtually eliminated for small \(a \) and \(b \), and kept under control for very large (or very small for that matter) \(a \) and \(b \). Of course, computing large powers is itself a notoriously hard problem, but even so, analytic combinations of Lanczos approximations can make the difference between obtaining a valid result, or simply garbage. Refer to the implementation notes for the beta function for an example of this method in practice. The incomplete \(\text{gamma}_p \) gamma and beta functions use similar analytic combinations of power terms, to combine gamma and beta functions divided by large powers into single (simpler) expressions.

The Approximation

The Lanczos Approximation to the Gamma Function is given by:

\[
\Gamma(z + 1) = \sqrt{2\pi} (z + g + 0.5)^{z + 0.5} e^{-(z + g + 0.5)} S_g(z)
\]

Where \(S_g(z) \) is an infinite sum, that is convergent for all \(z > 0 \), and \(g \) is an arbitrary parameter that controls the "shape" of the terms in the sum which is given by:

\[
S_g(z) = \left[\frac{1}{2} a_0 + a_1 \frac{z}{z + 1} + a_2 \frac{z(z - 1)}{(z + 1)(z + 2)} + \cdots \right]
\]
With individual coefficients defined in closed form by:

\[a_k = (-1)^k \sqrt{\frac{\pi}{2^k}} e^{\frac{g k}{2}} \sum_{j=0}^{k} (-1)^j (k + j - 1)! \left(\frac{e}{j + g + \frac{1}{2}} \right)^{j+\frac{1}{2}} \]

However, evaluation of the sum in that form can lead to numerical instability in the computation of the ratios of rising and falling factorials (effectively we're multiplying by a series of numbers very close to 1, so roundoff errors can accumulate quite rapidly).

The Lanczos approximation is therefore often written in partial fraction form with the leading constants absorbed by the coefficients in the sum:

\[\Gamma(z) = \left(\frac{z + g - 0.5}{e^{z + g - 0.5}} \right) L_g(z); \]

where:

\[L_g(z) = C_0 + \sum_{k=1}^{N-1} \frac{C_N}{z + k - 1} \]

Again parameter \(g \) is an arbitrarily chosen constant, and \(N \) is an arbitrarily chosen number of terms to evaluate in the "Lanczos sum" part.

Note

Some authors choose to define the sum from \(k=1 \) to \(N \), and hence end up with \(N+1 \) coefficients. This happens to confuse both the following discussion and the code (since C++ deals with half open array ranges, rather than the closed range of the sum). This convention is consistent with Godfrey, but not Pugh, so take care when referring to the literature in this field.

Computing the Coefficients

The coefficients \(C_0..C_{N-1} \) need to be computed from \(N \) and \(g \) at high precision, and then stored as part of the program. Calculation of the coefficients is performed via the method of Godfrey; let the constants be contained in a column vector \(P \), then:

\[P = B D C F \]

where \(B \) is an \(N \times N \) matrix:

\[B_{i,j} = \begin{cases} 1 & \text{if } i = 0 \\ -1^{i-j} X & \text{if } i > 0 \text{ and } j \geq i \\ 0 & \text{otherwise} \end{cases} \]

\[X = \left(\begin{array}{c} i + j - 1 \\ j - i \end{array} \right) \]

\(D \) is an \(N \times N \) matrix:

\[D_{i,j} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j = 0 \\ -1 & \text{if } i = j = 1 \\ \frac{D_{i-1,j-1} 2(j-1)}{i-1} & \text{otherwise} \end{cases} \]

\(C \) is an \(N \times N \) matrix.
\[C_{i,j} = \begin{cases} \frac{1}{2} & \text{if } i = j = 0 \\ 0 & \text{if } j > i \\ -1^{i-j}S & \text{otherwise} \end{cases} ; \quad S = \sum_{k=0}^{i} \binom{2i}{2k} \binom{k}{k+j-i} \]

and \(F \) is an \(N \) element column vector:

\[F_i = \frac{(2i)!e^{i+g+0.5}}{i!2^{2i-1}(i+g+0.5)^{i+0.5}} \]

Note that the matrices \(B \), \(D \) and \(C \) contain all integer terms and depend only on \(N \), this product should be computed first, and then multiplied by \(F \) as the last step.

Choosing the Right Parameters

The trick is to choose \(N \) and \(g \) to give the desired level of accuracy: choosing a small value for \(g \) leads to a strictly convergent series, but one which converges only slowly. Choosing a larger value of \(g \) causes the terms in the series to be large and/or divergent for about the first \(g-1 \) terms, and to then suddenly converge with a "crunch".

Pugh has determined the optimal value of \(g \) for \(N \) in the range \(1 \leq N \leq 60 \); unfortunately in practice choosing these values leads to cancellation errors in the Lanczos sum as the largest term in the (alternating) series is approximately 1000 times larger than the result. These optimal values appear not to be useful in practice unless the evaluation can be done with a number of guard digits and the coefficients are stored at higher precision than that desired in the result. These values are best reserved for say, computing to float precision with double precision arithmetic.

Table 53. Optimal choices for \(N \) and \(g \) when computing with guard digits (source: Pugh)

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>(N)</th>
<th>(g)</th>
<th>Max Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>6</td>
<td>5.581</td>
<td>9.51e-12</td>
</tr>
<tr>
<td>53</td>
<td>13</td>
<td>13.144565</td>
<td>9.2213e-23</td>
</tr>
</tbody>
</table>

The alternative described by Godfrey is to perform an exhaustive search of the \(N \) and \(g \) parameter space to determine the optimal combination for a given \(p \) digit floating-point type. Repeating this work found a good approximation for double precision arithmetic (close to the one Godfrey found), but failed to find really good approximations for 80 or 128-bit long doubles. Further it was observed that the approximations obtained tended to optimised for the small values of \(z \) \((1 < z < 200)\) used to test the implementation against the factorials. Computing ratios of gamma functions with large arguments were observed to suffer from error resulting from the truncation of the Lanczos series.

Pugh identified all the locations where the theoretical error of the approximation were at a minimum, but unfortunately has published only the largest of these minima. However, he makes the observation that the minima coincide closely with the location where the first neglected term \((a_N) \) in the Lanczos series \(S_k(z) \) changes sign. These locations are quite easy to locate, albeit with considerable computer time. These "sweet spots" need only be computed once, tabulated, and then searched when required for an approximation that delivers the required precision for some fixed precision type.

Unfortunately, following this path failed to find a really good approximation for 128-bit long doubles, and those found for 64 and 80-bit reals required an excessive number of terms. There are two competing issues here: high precision requires a large value of \(g \), but avoiding cancellation errors in the evaluation requires a small \(g \).

At this point note that the Lanczos sum can be converted into rational form (a ratio of two polynomials, obtained from the partial-fraction form using polynomial arithmetic), and doing so changes the coefficients so that they are all positive. That means that the sum in rational form can be evaluated without cancellation error, albeit with double the number of coefficients for a given \(N \). Repeating the search of the "sweet spots", this time evaluating the Lanczos sum in rational form, and testing only those "sweet spots" whose theoretical error is less than the machine epsilon for the type being tested, yielded good approximations for all the types tested. The optimal values found were quite close to the best cases reported by Pugh (just slightly larger \(N \) and slightly smaller \(g \) for a given precision than Pugh reports), and even though converting to rational form doubles the number of stored coefficients, it should be
noted that half of them are integers (and therefore require less storage space) and the approximations require a smaller N than would otherwise be required, so fewer floating point operations may be required overall.

The following table shows the optimal values for N and g when computing at fixed precision. These should be taken as work in progress: there are no values for 106-bit significand machines (Darwin long doubles & NTL quad_float), and further optimisation of the values of g may be possible. Errors given in the table are estimates of the error due to truncation of the Lanczos infinite series to N terms. They are calculated from the sum of the first five neglected terms - and are known to be rather pessimistic estimates - although it is noticeable that the best combinations of N and g occurred when the estimated truncation error almost exactly matches the machine epsilon for the type in question.

Table 54. Optimum value for N and g when computing at fixed precision

<table>
<thead>
<tr>
<th>Significand Size</th>
<th>Platform/Compiler Used</th>
<th>N</th>
<th>g</th>
<th>Max Truncation Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Win32, VC++ 7.1</td>
<td>6</td>
<td>1.428456135094165802001953125</td>
<td>9.41e-007</td>
</tr>
<tr>
<td>53</td>
<td>Win32, VC++ 7.1</td>
<td>13</td>
<td>6.024680040776729583740234375</td>
<td>3.23e-016</td>
</tr>
<tr>
<td>64</td>
<td>Suse Linux 9 IA64, gcc-3.3.3</td>
<td>17</td>
<td>12.252227365970611572265625</td>
<td>2.34e-024</td>
</tr>
<tr>
<td>116</td>
<td>HP Tru64 Unix 5.1B / Alpha, Compaq C++ V7.1-006</td>
<td>24</td>
<td>20.3209821879863739013671875</td>
<td>4.75e-035</td>
</tr>
</tbody>
</table>

Finally note that the Lanczos approximation can be written as follows by removing a factor of $\exp(g)$ from the denominator, and then dividing all the coefficients by $\exp(g)$:

$$
\Gamma(z) = \left(\frac{z + g - 0.5}{e}\right)^{z-0.5} L_{g,e}(z);
$$

This form is more convenient for calculating lgamma, but for the gamma function the division by e turns a possibly exact quality into an inexact value: this reduces accuracy in the common case that the input is exact, and so isn't used for the gamma function.

References

1. Paul Godfrey, "A note on the computation of the convergent Lanczos complex Gamma approximation".
3. Viktor T. Toth, "Calculators and the Gamma Function".

The Remez Method

The Remez algorithm is a methodology for locating the minimax rational approximation to a function. This short article gives a brief overview of the method, but it should not be regarded as a thorough theoretical treatment, for that you should consult your favorite textbook.

Imagine that you want to approximate some function $f(x)$ by way of a rational function $R(x)$, where $R(x)$ may be either a polynomial $P(x)$ or a ratio of two polynomials $P(x)/Q(x)$ (a rational function). Initially we'll concentrate on the polynomial case, as it's by far the easier to deal with, later we'll extend to the full rational function case.

We want to find the "best" rational approximation, where "best" is defined to be the approximation that has the least deviation from $f(x)$. We can measure the deviation by way of an error function:

$$
E_{abs}(x) = |f(x) - R(x)|
$$

which is expressed in terms of absolute error, but we can equally use relative error:
E_{eq}(x) = (f(x) - R(x)) / |f(x)|

And indeed in general we can scale the error function in any way we want, it makes no difference to the maths, although the two forms above cover almost every practical case that you're likely to encounter.

The minimax rational function R(x) is then defined to be the function that yields the smallest maximal value of the error function. Chebyshev showed that there is a unique minimax solution for R(x) that has the following properties:

- If R(x) is a polynomial of degree N, then there are N+2 unknowns: the N+1 coefficients of the polynomial, and maximal value of the error function.
- The error function has N+1 roots, and N+2 extrema (minima and maxima).
- The extrema alternate in sign, and all have the same magnitude.

That means that if we know the location of the extrema of the error function then we can write N+2 simultaneous equations:

\[R(x_i) + (-1)^i E = f(x_i) \]

where E is the maximal error term, and x_i are the abscissa values of the N+2 extrema of the error function. It is then trivial to solve the simultaneous equations to obtain the polynomial coefficients and the error term.

Unfortunately we don't know where the extrema of the error function are located!

The Remez Method

The Remez method is an iterative technique which, given a broad range of assumptions, will converge on the extrema of the error function, and therefore the minimax solution.

In the following discussion we'll use a concrete example to illustrate the Remez method: an approximation to the function e^x over the range [-1, 1].

Before we can begin the Remez method, we must obtain an initial value for the location of the extrema of the error function. We could "guess" these, but a much closer first approximation can be obtained by first constructing an interpolated polynomial approximation to f(x).

In order to obtain the N+1 coefficients of the interpolated polynomial we need N+1 points (x_0...x_N): with our interpolated form passing through each of those points that yields N+1 simultaneous equations:

\[f(x_i) = P(x_i) = c_0 + c_1 x_i + \ldots + c_N x_i^N \]

Which can be solved for the coefficients c_0...c_N in P(x).

Obviously this is not a minimax solution, indeed our only guarantee is that f(x) and P(x) touch at N+1 locations, away from those points the error may be arbitrarily large. However, we would clearly like this initial approximation to be as close to f(x) as possible, and it turns out that using the zeros of an orthogonal polynomial as the initial interpolation points is a good choice. In our example we'll use the zeros of a Chebyshev polynomial as these are particularly easy to calculate, interpolating for a polynomial of degree 4, and measuring *relative error* we get the following error function:
Which has a peak relative error of 1.2×10^{-3}.

While this is a pretty good approximation already, judging by the shape of the error function we can clearly do better. Before starting on the Remez method proper, we have one more step to perform: locate all the extrema of the error function, and store these locations as our initial Chebyshev control points.

Note

In the simple case of a polynomial approximation, by interpolating through the roots of a Chebyshev polynomial we have in fact created a Chebyshev approximation to the function: in terms of absolute error this is the best a priori choice for the interpolated form we can achieve, and typically is very close to the minimax solution.

However, if we want to optimise for relative error, or if the approximation is a rational function, then the initial Chebyshev solution can be quite far from the ideal minimax solution.

A more technical discussion of the theory involved can be found in this online course.

Remez Step 1

The first step in the Remez method, given our current set of $N+2$ Chebyshev control points x_i, is to solve the $N+2$ simultaneous equations:

$$P(x_i) + (-1)^i E = f(x_i)$$

To obtain the error term E, and the coefficients of the polynomial $P(x)$.

This gives us a new approximation to $f(x)$ that has the same error E at each of the control points, and whose error function alternates in sign at the control points. This is still not necessarily the minimax solution though: since the control points may not be at the extrema of the error function. After this first step here's what our approximation's error function looks like:
Clearly this is still not the minimax solution since the control points are not located at the extrema, but the maximum relative error has now dropped to 5.6×10^{-4}.

Remez Step 2

The second step is to locate the extrema of the new approximation, which we do in two stages: first, since the error function changes sign at each control point, we must have $N+1$ roots of the error function located between each pair of $N+2$ control points. Once these roots are found by standard root finding techniques, we know that N extrema are bracketed between each pair of roots, plus two more between the endpoints of the range and the first and last roots. The $N+2$ extrema can then be found using standard function minimisation techniques.

We now have a choice: multi-point exchange, or single point exchange.

In single point exchange, we move the control point nearest to the largest extrema to the abscissa value of the extrema.

In multi-point exchange we swap all the current control points, for the locations of the extrema.

In our example we perform multi-point exchange.

Iteration

The Remez method then performs steps 1 and 2 above iteratively until the control points are located at the extrema of the error function: this is then the minimax solution.

For our current example, two more iterations converges on a minimax solution with a peak relative error of 5×10^{-4} and an error function that looks like:
Rational Approximations

If we wish to extend the Remez method to a rational approximation of the form

\[f(x) = R(x) = \frac{P(x)}{Q(x)} \]

where \(P(x) \) and \(Q(x) \) are polynomials, then we proceed as before, except that now we have \(N+M+2 \) unknowns if \(P(x) \) is of order \(N \) and \(Q(x) \) is of order \(M \). This assumes that \(Q(x) \) is normalised so that its leading coefficient is 1, giving \(N+M+1 \) polynomial coefficients in total, plus the error term \(E \).

The simultaneous equations to be solved are now:

\[\frac{P(x_i)}{Q(x_i)} + (-1)^i E = f(x_i) \]

Evaluated at the \(N+M+2 \) control points \(x_i \).

Unfortunately these equations are non-linear in the error term \(E \); we can only solve them if we know \(E \), and yet \(E \) is one of the unknowns!

The method usually adopted to solve these equations is an iterative one: we guess the value of \(E \), solve the equations to obtain a new value for \(E \) (as well as the polynomial coefficients), then use the new value of \(E \) as the next guess. The method is repeated until \(E \) converges on a stable value.

These complications extend the running time required for the development of rational approximations quite considerably. It is often desirable to obtain a rational rather than polynomial approximation none the less: rational approximations will often match more difficult to approximate functions, to greater accuracy, and with greater efficiency, than their polynomial alternatives. For example, if we takes our previous example of an approximation to \(e^x \), we obtained \(5\times10^{-4} \) accuracy with an order 4 polynomial. If we move two of the unknowns into the denominator to give a pair of order 2 polynomials, and re-minimise, then the peak relative error drops to \(8.7\times10^{-5} \). That’s a 5 fold increase in accuracy, for the same number of terms overall.

Practical Considerations

Most treatises on approximation theory stop at this point. However, from a practical point of view, most of the work involves finding the right approximating form, and then persuading the Remez method to converge on a solution.

So far we have used a direct approximation:

\[f(x) = R(x) \]
But this will converge to a useful approximation only if $f(x)$ is smooth. In addition round-off errors when evaluating the rational form mean that this will never get closer than within a few epsilon of machine precision. Therefore this form of direct approximation is often reserved for situations where we want efficiency, rather than accuracy.

The first step in improving the situation is generally to split $f(x)$ into a dominant part that we can compute accurately by another method, and a slowly changing remainder which can be approximated by a rational approximation. We might be tempted to write:

$$f(x) = g(x) + R(x)$$

where $g(x)$ is the dominant part of $f(x)$, but if $f(x)/g(x)$ is approximately constant over the interval of interest then:

$$f(x) = g(x)(c + R(x))$$

Will yield a much better solution: here c is a constant that is the approximate value of $f(x)/g(x)$ and $R(x)$ is typically tiny compared to c. In this situation if $R(x)$ is optimised for absolute error, then as long as its error is small compared to the constant c, that error will effectively get wiped out when $R(x)$ is added to c.

The difficult part is obviously finding the right $g(x)$ to extract from your function: often the asymptotic behaviour of the function will give a clue, so for example the function erfc becomes proportional to $e^{-x^2/x}$ as x becomes large. Therefore using:

$$\text{erfc}(z) = (C + R(x)) e^{-x^2/x}$$

as the approximating form seems like an obvious thing to try, and does indeed yield a useful approximation.

However, the difficulty then becomes one of converging the minimax solution. Unfortunately, it is known that for some functions the Remez method can lead to divergent behaviour, even when the initial starting approximation is quite good. Furthermore, it is not uncommon for the solution obtained in the first Remez step above to be a bad one: the equations to be solved are generally "stiff", often very close to being singular, and assuming a solution is found at all, round-off errors and a rapidly changing error function, can lead to a situation where the error function does not in fact change sign at each control point as required. If this occurs, it is fatal to the Remez method. It is also possible to obtain solutions that are perfectly valid mathematically, but which are quite useless computationally: either because there is an unavoidable amount of roundoff error in the computation of the rational function, or because the denominator has one or more roots over the interval of the approximation. In the latter case while the approximation may have the correct limiting value at the roots, the approximation is nonetheless useless.

Assuming that the approximation does not have any fatal errors, and that the only issue is converging adequately on the minimax solution, the aim is to get as close as possible to the minimax solution before beginning the Remez method. Using the zeros of a Chebyshev polynomial for the initial interpolation is a good start, but may not be ideal when dealing with relative errors and/or rational (rather than polynomial) approximations. One approach is to skew the initial interpolation points to one end: for example if we raise the roots of the Chebyshev polynomial to a positive power greater than 1 then the roots will be skewed towards the middle of the [-1,1] interval, while a positive power less than one will skew them towards either end. More usefully, if we initially rescale the points over [0,1] and then raise to a positive power, we can skew them to the left or right. Returning to our example of e^x over [-1,1], the initial interpolated form was some way from the minimax solution:
However, if we first skew the interpolation points to the left (rescale them to [0, 1], raise to the power 1.3, and then rescale back to [-1,1]) we reduce the error from 1.3×10^{-3} to 6×10^{-4}:

It's clearly still not ideal, but it is only a few percent away from our desired minimax solution (5×10^{-4}).

Remez Method Checklist

The following lists some of the things to check if the Remez method goes wrong, it is by no means an exhaustive list, but is provided in the hopes that it will prove useful.

- Is the function smooth enough? Can it be better separated into a rapidly changing part, and an asymptotic part?
- Does the function being approximated have any "blips" in it? Check for problems as the function changes computation method, or if a root, or an infinity has been divided out. The telltale sign is if there is a narrow region where the Remez method will not converge.
• Check you have enough accuracy in your calculations: remember that the Remez method works on the difference between the approximation and the function being approximated: so you must have more digits of precision available than the precision of the approximation being constructed. So for example at double precision, you shouldn't expect to be able to get better than a float precision approximation.

• Try skewing the initial interpolated approximation to minimise the error before you begin the Remez steps.

• If the approximation won't converge or is ill-conditioned from one starting location, try starting from a different location.

• If a rational function won't converge, one can minimise a polynomial (which presents no problems), then rotate one term from the numerator to the denominator and minimise again. In theory one can continue moving terms one at a time from numerator to denominator, and then re-minimising, retaining the last set of control points at each stage.

• Try using a smaller interval. It may also be possible to optimise over one (small) interval, rescale the control points over a larger interval, and then re-minimise.

• Keep absissa values small: use a change of variable to keep the abscissa over, say \([0, b]\), for some smallish value \(b\).

References

The original references for the Remez Method and its extension to rational functions are unfortunately in Russian:

Some English language sources include:

References

General references

(Specific detailed sources for individual functions and distributions are given at the end of each individual section).
DLMF (NIST Digital Library of Mathematical Functions) is intended to be a replacement for the legendary Abramowitz and Stegun's Handbook of Mathematical Functions, now scheduled to be completed in 2007.

The Wolfram Functions Site The Wolfram Functions Site - Providing the mathematical and scientific community with the world's largest (and most authoritative) collection of formulas and graphics about mathematical functions.

NIST/SEMATECH e-Handbook of Statistical Methods

Mathematica Documentation: DiscreteDistributions The Wolfram Research Documentation Center is a collection of online reference materials about Mathematica, CalculationCenter, and other Wolfram Research products.

Mathematica Documentation: ContinuousDistributions The Wolfram Research Documentation Center is a collection of online reference materials about Mathematica, CalculationCenter, and other Wolfram Research products.

pugh.pdf (application/pdf Object) Pugh Msc Thesis on the Lanczos approximation to the gamma function.

N1514, 03-0097, A Proposal to Add Mathematical Special Functions to the C++ Standard Library (version 2), Walter E. Brown

Calculators* that we found (and used to cross-check - as far as their widely-varying accuracy allowed).

Other Libraries

Cephes library by Shephen Moshier and his book:

100-decimal digit calculator provided some spot values.

C++ version.

CDFLIB Library of Fortran Routines for Cumulative Distribution functions.

DCDFLIB C++ version DCDFLIB is a library of C++ routines, using double precision arithmetic, for evaluating cumulative probability density functions.

http://www.softintegration.com/docs/packagechnagstat

NAG libraries.

MathCAD

JMSL Numerical Library (Java).

Library Status

History and What's New

Boost-1.41.0

• Significantly improved performance for the incomplete gamma function and its inverse.

Boost-1.40.0

• Added support for MPFR as a bignum type.
• Added some full specializations of the policy classes to reduce compile times.
• Added logistic and hypergeometric distributions, from Gautam Sewani's Google Summer of Code project.
• Added Laplace distribution submitted by Thijs van den Berg.
• Updated performance test code to include new distributions, and improved the performance of the non-central distributions.
• Added SSE2 optimised Lanczos approximation code, from Gautam Sewani's Google Summer of Code project.
• Fixed bug in cyl_bessel_i that used an incorrect approximation for $\nu = 0.5$, also effects the non-central Chi Square Distribution when $\nu = 3$, see bug report #2877.
• Fixed minor bugs #2873.

Boost-1.38.0

• Added Johan Råde's optimised floating point classification routines.
• Fixed code so that it compiles in GCC's -pedantic mode (bug report #1451).

Boost-1.37.0

• Improved accuracy and testing of the inverse hypergeometric functions.

Boost-1.36.0

• Added Noncentral Chi Squared Distribution.
• Added Noncentral Beta Distribution.
• Added Noncentral F Distribution.
• Added Noncentral T Distribution.
• Added Exponential Integral Functions.
• Added Zeta Function.
• Added Rounding and Truncation functions.
• Added Compile time powers of runtime bases.
• Added SSE2 optimizations for Lanczos evaluation.

Boost-1.35.0: Post Review First Official Release

• Added Policy based framework that allows fine grained control over function behaviour.

• **Breaking change:** Changed default behaviour for domain, pole and overflow errors to throw an exception (based on review feedback), this behaviour can be customised using Policy’s.

• **Breaking change:** Changed exception thrown when an internal evaluation error occurs to boost::math::evaluation_error.

• **Breaking change:** Changed discrete quantiles to return an integer result: this is anything up to 20 times faster than finding the true root, this behaviour can be customised using Policy’s.

• Polynomial/rational function evaluation is now customisable and hopefully faster than before.

• Added performance test program.

Milestone 4: Second Review Candidate (1st March 2007)

• Moved Xiaogang Zhang's Bessel Functions code into the library, and brought them into line with the rest of the code.

• Added C# "Distribution Explorer" demo application.

Milestone 3: First Review Candidate (31st Dec 2006)

• Implemented the main probability distribution and density functions.

• Implemented digamma.

• Added more factorial functions.

• Implemented the Hermite, Legendre and Laguerre polynomials plus the spherical harmonic functions from TR1.

• Moved Xiaogang Zhang's elliptic integral code into the library, and brought them into line with the rest of the code.

• Moved Hubert Holin's existing Boost.Math special functions into this library and brought them into line with the rest of the code.

Milestone 2: Released September 10th 2006

• Implement preview release of the statistical distributions.

• Added statistical distributions tutorial.

• Implemented root finding algorithms.

• Implemented the inverses of the incomplete gamma and beta functions.

• Rewrite erf/erfc as rational approximations (valid to 128-bit precision).

• Integrated the statistical results generated from the test data with Boost.Test: uses a database of expected results, indexed by test, floating point type, platform, and compiler.

• Improved lgamma near 1 and 2 (rational approximations).

• Improved erf/erfc inverses (rational approximations).

• Implemented Rational function generation (the Remez method).
Milestone 1: Released March 31st 2006

- Implement gamma/beta/erf functions along with their incomplete counterparts.
- Generate high quality test data, against which future improvements can be judged.
- Provide tools for the evaluation of infinite series, continued fractions, and rational functions.
- Provide tools for testing against tabulated test data, and collecting statistics on error rates.
- Provide sufficient docs for people to be able to find their way around the library.

SVN Revisions:

Sandbox and trunk last synchronised at revision: 56669.

Compilers

This section contains some information about how various compilers work with this library. It is not comprehensive and updated experiences are always welcome. Some effort has been made to suppress unhelpful warnings but it is difficult to achieve this on all systems.
Table 55. Supported/Tested Compilers

<table>
<thead>
<tr>
<th>Platform</th>
<th>Compiler</th>
<th>Has long double support</th>
<th>Notes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>MSVC 7.1 and later</td>
<td>Yes</td>
<td>All tests OK.</td>
<td>We aim to keep our headers warning free at level 4 with this compiler.</td>
</tr>
<tr>
<td>Windows</td>
<td>Intel 8.1 and later</td>
<td>Yes</td>
<td>All tests OK.</td>
<td>We aim to keep our headers warning free at level 4 with this compiler. However, the tests cases tend to generate a lot of warnings relating to numeric underflow of the test data: these are harmless.</td>
</tr>
<tr>
<td>Windows</td>
<td>GNU Mingw32 C++</td>
<td>Yes</td>
<td>All tests OK.</td>
<td>We aim to keep our headers warning free with -Wall with this compiler.</td>
</tr>
<tr>
<td>Windows</td>
<td>GNU Cygwin C++</td>
<td>No</td>
<td>All tests OK.</td>
<td>We aim to keep our headers warning free with -Wall with this compiler. Long double support has been disabled because there are no native long double C std library functions available.</td>
</tr>
<tr>
<td>Windows</td>
<td>Borland C++ 5.8.2 (Developer studio 2006)</td>
<td>No</td>
<td>We have only partial compatibility with this compiler: Long double support has been disabled because the native long double C standard library functions really only forward to the double versions. This can result in unpredictable behaviour when using the long double overloads: for example sqrt1 applied to a finite value, can result in an infinite result. Some functions still fail to compile, there are no known workarounds at present.</td>
<td></td>
</tr>
<tr>
<td>Linux</td>
<td>GNU C++ 3.4 and later</td>
<td>Yes</td>
<td>All tests OK.</td>
<td>We aim to keep our headers warning free with -Wall with this compiler.</td>
</tr>
<tr>
<td>Linux</td>
<td>Intel C++ 10.0 and later</td>
<td>Yes</td>
<td>All tests OK.</td>
<td>We aim to keep our headers warning free with -Wall with this compiler. However, the tests cases tend to generate a lot of warnings relating to numeric underflow of the test data: these are harmless.</td>
</tr>
<tr>
<td>Platform</td>
<td>Compiler</td>
<td>Has long double support</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Linux</td>
<td>Intel C++ 8.1 and 9.1</td>
<td>No</td>
<td>All tests OK. Long double support has been disabled with these compiler releases because calling the standard library long double math functions can result in a segfault. The issue is Linux distribution and glibc version specific and is Intel bug report #409291. Fully up to date releases of Intel 9.1 (post version 1_cc_c_9.1.046) shouldn't have this problem. If you need long double support with this compiler, then comment out the define of BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS at line 55 of boost/math/tools/config.hpp. We aim to keep our headers warning free with -Wall with this compiler. However, The tests cases tend to generate a lot of warnings relating to numeric underflow of the test data: these are harmless.</td>
<td></td>
</tr>
<tr>
<td>Linux</td>
<td>QLogic PathScale 3.0</td>
<td>Yes</td>
<td>Some tests involving conceptual checks fail to build, otherwise there appear to be no issues.</td>
<td></td>
</tr>
<tr>
<td>Linux</td>
<td>Sun Studio 12</td>
<td>Yes</td>
<td>Some tests involving function overload resolution fail to build, these issues should be rarely encountered in practice.</td>
<td></td>
</tr>
<tr>
<td>Solaris</td>
<td>Sun Studio 12</td>
<td>Yes</td>
<td>Some tests involving function overload resolution fail to build, these issues should be rarely encountered in practice.</td>
<td></td>
</tr>
<tr>
<td>Solaris</td>
<td>GNU C++ 4.x</td>
<td>Yes</td>
<td>All tests OK. We aim to keep our headers warning free with -Wall with this compiler.</td>
<td></td>
</tr>
<tr>
<td>HP Tru64</td>
<td>Compaq C++ 7.1</td>
<td>Yes</td>
<td>All tests OK.</td>
<td></td>
</tr>
<tr>
<td>HP-UX Itanium</td>
<td>HP aCC 6.x</td>
<td>Yes</td>
<td>All tests OK. Unfortunately this compiler emits quite a few warnings from libraries upon which we depend (TR1, Array etc).</td>
<td></td>
</tr>
<tr>
<td>HP-UX PA-RISC</td>
<td>GNU C++ 3.4</td>
<td>No</td>
<td>All tests OK.</td>
<td></td>
</tr>
<tr>
<td>Apple Mac OS X, Intel</td>
<td>Darwin/GNU C++ 4.x</td>
<td>Yes</td>
<td>All tests OK.</td>
<td></td>
</tr>
<tr>
<td>Apple Mac OS X, PowerPC</td>
<td>Darwin/GNU C++ 4.x</td>
<td>No</td>
<td>All tests OK. Long double support has been disabled on this platform due to the rather strange nature of Darwin's 106-bit long double implementation. It should be possible to make this work if someone is prepared to offer assistance.</td>
<td></td>
</tr>
<tr>
<td>IMB AIX</td>
<td>IBM xlc 5.3</td>
<td>Yes</td>
<td>All tests pass except for our fpclassify tests which fail due to a bug in std::numeric_limits, the bug effects the test code, not fpclassify itself. The IBM compiler group are aware of the problem.</td>
<td></td>
</tr>
</tbody>
</table>
Table 56. Unsupported Compilers

<table>
<thead>
<tr>
<th>Platform</th>
<th>Compiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>Borland C++ 5.9.2 (Borland Developer Studio 2007)</td>
</tr>
<tr>
<td>Windows</td>
<td>MSVC 6 and 7</td>
</tr>
</tbody>
</table>

If you're compiler or platform is not listed above, please try running the regression tests: cd into boost-root/libs/math/test and do a:

```
bjam mytoolset
```

where "mytoolset" is the name of the Boost.Build toolset used for your compiler. The chances are that many of the accuracy tests will fail at this stage - don't panic - the default acceptable error tolerances are quite tight, especially for long double types with an extended exponent range (these cause more extreme test cases to be executed for some functions). You will need to cast an eye over the output from the failing tests and make a judgement as to whether the error rates are acceptable or not.

Known Issues, and Todo List

This section lists those issues that are known about.

Predominantly this is a TODO list, or a list of possible future enhancements. Items labeled "High Priority" effect the proper functioning of the component, and should be fixed as soon as possible. Items labeled "Medium Priority" are desirable enhancements, often pertaining to the performance of the component, but do not effect it's accuracy or functionality. Items labeled "Low Priority" should probably be investigated at some point. Such classifications are obviously highly subjective.

If you don't see a component listed here, then we don't have any known issues with it.

tgamma

- Can the Lanczos approximation be optimized any further? (low priority)

Incomplete Beta

- Investigate Didonato and Morris' asymptotic expansion for large a and b (medium priority).

Inverse Gamma

- Investigate whether we can skip iteration altogether if the first approximation is good enough (Medium Priority).

Polynomials

- The Legendre and Laguerre Polynomials have surprisingly different error rates on different platforms, considering they are evaluated with only basic arithmetic operations. Maybe this is telling us something, or maybe not (Low Priority).

Elliptic Integrals

- Carlson's algorithms are essentially unchanged from Xiaogang Zhang's Google Summer of Code student project, and are based on Carlson's original papers. However, Carlson has revised his algorithms since then (refer to the references in the elliptic integral docs for a list), to improve performance and accuracy, we may be able to take advantage of these improvements too (Low Priority).

- Carlson's algorithms (mainly R_J) are somewhat prone to internal overflow/underflow when the arguments are very large or small. The homogeneity relations:

 $$R_F(ka, kb, kc) = k^{-1/2} R_F(a, b, c)$$

 and
\[R_3(ka, kb, kc, kr) = k^{-3/2} R_3(a, b, c, r) \]

could be used to sidestep trouble here: provided the problem domains can be accurately identified. (Medium Priority).

- Carlson’s \(R_C \) can be reduced to elementary functions (asin and log), would it be more efficient evaluated this way, rather than by Carlson’s algorithms? (Low Priority).

- Should we add an implementation of Carlson’s \(R_G \)? It’s not required for the Legendre form integrals, but some people may find it useful (Low Priority).

- There are a several other integrals: \(D(\phi, k) \), \(Z(\beta, k) \), \(A_0(\beta, k) \) and Bulirsch’s \(el \) functions that could be implemented using Carlson's integrals (Low Priority).

- The integrals \(K(k) \) and \(E(k) \) could be implemented using rational approximations (both for efficiency and accuracy), assuming we can find them. (Medium Priority).

- There is a sub-domain of \(\text{ellint}_3 \) that is unimplemented (see the docs for details), currently it’s not clear how to solve this issue, or if it's ever likely to be an real problem in practice - especially as most other implementations don't support this domain either (Medium Priority).

Inverse Hyperbolic Functions

- These functions are inherited from previous Boost versions, before \(\log1p \) became widely available. Would they be better expressed in terms of this function? This is probably only an issue for very high precision types (Low Priority).

Statistical distributions

- Student’s \(t \) Perhaps switch to normal distribution as a better approximation for very large degrees of freedom?

Feature Requests

The following table lists distributions that are found in other packages but which are not yet present here, the more frequently the distribution is found, the higher the priority for implementing it:
<table>
<thead>
<tr>
<th>Distribution</th>
<th>R</th>
<th>Mathematica 6</th>
<th>NIST</th>
<th>Regress+</th>
<th>Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse Gaussian / Inverse Normal</td>
<td></td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Geometric</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Multinomial</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Tukey Lambda</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Half Normal / Folded Normal</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Chi</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Gumbel</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Discrete Uniform</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Log Series</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Nakagami (generalised Chi)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Log Logistic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Tukey (Studentized range)</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wilcoxon rank sum</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wilcoxon signed rank</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Non-central Beta</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Laplace</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maxwell</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beta-Binomial</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beta-negative Binomial</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zipf</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Birnbaum-Saunders / Fatigue Life</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Double Exponential</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Power Normal</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Power Lognormal</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cosine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Double Gamma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Double Weibul</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Hyperbolic Secant</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>
Also asked for more than once:

• Add support for interpolated distributions, possibly combine with numeric integration and differentiation.

• Add support for bivariate and multivariate distributions: most especially the normal.

• Add support for the log of the cdf and pdf: this is mainly a performance optimisation since we can avoid some special function calls for some distributions by returning the log of the result.

Credits and Acknowledgements

Hubert Holin started the Boost.Math library. The inverse hyperbolic functions, and the sinus cardinal functions are his.

John Maddock started this library, the beta, gamma, erf, polynomial, and factorial functions are his, as is the "Toolkit" section, and many of the statistical distributions.

Paul A. Bristow threw down the challenge in A Proposal to add Mathematical Functions for Statistics to the C++ Standard Library to add the key math functions, especially those essential for statistics. After JM accepted and solved the difficult problems, not only numerically, but in full C++ template style, PAB implemented a few of the statistical distributions. PAB also tirelessly proof-read everything that JM threw at him (so that all remaining editorial mistakes are his fault).

Xiaogang Zhang worked on the Bessel functions and elliptic integrals for his Google Summer of Code project 2006.

Bruno Lalande submitted the "compile time power of a runtime base" code.

Johan Råde wrote the optimised floating point classification code.

Gautam Sewani coded the logistic distribution as part of a Google Summer of Code project 2008.

M. A. (Thijs) van den Berg coded the Laplace distribution. (Thijs has also threatened to implement some multivariate distributions).

Professor Nico Temme for advice on the inverse incomplete beta function.

Victor Shoup for NTL, without which it would have much more difficult to produce high accuracy constants, and especially the tables of accurate values for testing.

We are grateful to Joel Guzman for helping us stress-test his Boost.Quickbook program used to generate the html and pdf versions of this document, adding several new features en route.

Plots of the functions and distributions were prepared in W3C standard Scalable Vector Graphic (SVG) format using a program created by Jacob Voytko during a Google Summer of Code (2007). Since browser support for rendering SVG is still not universal (Microsoft Internet Explorer, even IE 8 beta, still lacks native SVG support but can be made to work with Adobe's free SVG viewer plugin), so the SVG files were batch converted to JPEG using Inkscape.

We are also indebted to Matthias Schabel for managing the formal Boost-review of this library, and to all the reviewers - including Guillaume Melquiond, Arnaldur Gylfason, John Phillips, Stephan Tolksdorf and Jeff Garland - for their many helpful comments.